Boosting with prior knowledge for call classification

The use of boosting for call classification in spoken language understanding is described in this paper. An extension to the AdaBoost algorithm is presented that permits the incorporation of prior knowledge of the application as a means of compensating for the large dependence on training data. We g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on speech and audio processing 2005-03, Vol.13 (2), p.174-181
Hauptverfasser: Schapire, R.E., Rochery, M., Rahim, M., Gupta, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue 2
container_start_page 174
container_title IEEE transactions on speech and audio processing
container_volume 13
creator Schapire, R.E.
Rochery, M.
Rahim, M.
Gupta, N.
description The use of boosting for call classification in spoken language understanding is described in this paper. An extension to the AdaBoost algorithm is presented that permits the incorporation of prior knowledge of the application as a means of compensating for the large dependence on training data. We give a convergence result for the algorithm, and we describe experiments on four datasets showing that prior knowledge can substantially improve classification performance.
doi_str_mv 10.1109/TSA.2004.840937
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_919917038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1395962</ieee_id><sourcerecordid>2425186881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-392ac99b0a8425ac9443bb4cb19e9a4566591c517a533f355bc1a71f6f80056d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKtnD14WQT1tm2wemzlq8QUFD9ZzyKbZmrrd1GRL8d-bsoWCB08zw3wzk3wIXRI8IgTDePZ-PyowZiPJMNDyCA0I5zIvKKfHKceC5kKU4hSdxbjEGEtSsgHiD97HzrWLbOu6z2wdnA_ZV-u3jZ0vbFanyuimyUyjY3S1M7pzvj1HJ7Vuor3YxyH6eHqcTV7y6dvz6-R-mhsqSZdTKLQBqLCWrOApZYxWFTMVAQuacSE4EMNJqTmlNeW8MkSXpBa1xJiLOR2iu37vOvjvjY2dWrlobNPo1vpNVEAASImpTOTtv2RRAoCUO_D6D7j0m9CmX6jUpcAZkASNe8gEH2OwtUpiVjr8KILVzrZKttXOtuptp4mb_Vodk7A66Na4eBgTnKZ3QuKues5Zaw_tdBdEQX8BydCF2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883395491</pqid></control><display><type>article</type><title>Boosting with prior knowledge for call classification</title><source>IEEE Electronic Library (IEL)</source><creator>Schapire, R.E. ; Rochery, M. ; Rahim, M. ; Gupta, N.</creator><creatorcontrib>Schapire, R.E. ; Rochery, M. ; Rahim, M. ; Gupta, N.</creatorcontrib><description>The use of boosting for call classification in spoken language understanding is described in this paper. An extension to the AdaBoost algorithm is presented that permits the incorporation of prior knowledge of the application as a means of compensating for the large dependence on training data. We give a convergence result for the algorithm, and we describe experiments on four datasets showing that prior knowledge can substantially improve classification performance.</description><identifier>ISSN: 1063-6676</identifier><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 1558-2353</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TSA.2004.840937</identifier><identifier>CODEN: IESPEJ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Boosting ; call classification ; Classification ; Convergence ; dialogue systems ; Exact sciences and technology ; Humans ; Information, signal and communications theory ; Learning systems ; Loss measurement ; Natural languages ; Performance enhancement ; prior knowledge ; Robustness ; Signal processing ; Speech ; Speech processing ; Speech recognition ; spoken language understanding ; Telecommunications and information theory ; Text categorization ; Training ; Training data</subject><ispartof>IEEE transactions on speech and audio processing, 2005-03, Vol.13 (2), p.174-181</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-392ac99b0a8425ac9443bb4cb19e9a4566591c517a533f355bc1a71f6f80056d3</citedby><cites>FETCH-LOGICAL-c381t-392ac99b0a8425ac9443bb4cb19e9a4566591c517a533f355bc1a71f6f80056d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1395962$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1395962$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16537039$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schapire, R.E.</creatorcontrib><creatorcontrib>Rochery, M.</creatorcontrib><creatorcontrib>Rahim, M.</creatorcontrib><creatorcontrib>Gupta, N.</creatorcontrib><title>Boosting with prior knowledge for call classification</title><title>IEEE transactions on speech and audio processing</title><addtitle>T-SAP</addtitle><description>The use of boosting for call classification in spoken language understanding is described in this paper. An extension to the AdaBoost algorithm is presented that permits the incorporation of prior knowledge of the application as a means of compensating for the large dependence on training data. We give a convergence result for the algorithm, and we describe experiments on four datasets showing that prior knowledge can substantially improve classification performance.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Boosting</subject><subject>call classification</subject><subject>Classification</subject><subject>Convergence</subject><subject>dialogue systems</subject><subject>Exact sciences and technology</subject><subject>Humans</subject><subject>Information, signal and communications theory</subject><subject>Learning systems</subject><subject>Loss measurement</subject><subject>Natural languages</subject><subject>Performance enhancement</subject><subject>prior knowledge</subject><subject>Robustness</subject><subject>Signal processing</subject><subject>Speech</subject><subject>Speech processing</subject><subject>Speech recognition</subject><subject>spoken language understanding</subject><subject>Telecommunications and information theory</subject><subject>Text categorization</subject><subject>Training</subject><subject>Training data</subject><issn>1063-6676</issn><issn>2329-9290</issn><issn>1558-2353</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kEtLAzEQgIMoWKtnD14WQT1tm2wemzlq8QUFD9ZzyKbZmrrd1GRL8d-bsoWCB08zw3wzk3wIXRI8IgTDePZ-PyowZiPJMNDyCA0I5zIvKKfHKceC5kKU4hSdxbjEGEtSsgHiD97HzrWLbOu6z2wdnA_ZV-u3jZ0vbFanyuimyUyjY3S1M7pzvj1HJ7Vuor3YxyH6eHqcTV7y6dvz6-R-mhsqSZdTKLQBqLCWrOApZYxWFTMVAQuacSE4EMNJqTmlNeW8MkSXpBa1xJiLOR2iu37vOvjvjY2dWrlobNPo1vpNVEAASImpTOTtv2RRAoCUO_D6D7j0m9CmX6jUpcAZkASNe8gEH2OwtUpiVjr8KILVzrZKttXOtuptp4mb_Vodk7A66Na4eBgTnKZ3QuKues5Zaw_tdBdEQX8BydCF2A</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Schapire, R.E.</creator><creator>Rochery, M.</creator><creator>Rahim, M.</creator><creator>Gupta, N.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050301</creationdate><title>Boosting with prior knowledge for call classification</title><author>Schapire, R.E. ; Rochery, M. ; Rahim, M. ; Gupta, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-392ac99b0a8425ac9443bb4cb19e9a4566591c517a533f355bc1a71f6f80056d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Boosting</topic><topic>call classification</topic><topic>Classification</topic><topic>Convergence</topic><topic>dialogue systems</topic><topic>Exact sciences and technology</topic><topic>Humans</topic><topic>Information, signal and communications theory</topic><topic>Learning systems</topic><topic>Loss measurement</topic><topic>Natural languages</topic><topic>Performance enhancement</topic><topic>prior knowledge</topic><topic>Robustness</topic><topic>Signal processing</topic><topic>Speech</topic><topic>Speech processing</topic><topic>Speech recognition</topic><topic>spoken language understanding</topic><topic>Telecommunications and information theory</topic><topic>Text categorization</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schapire, R.E.</creatorcontrib><creatorcontrib>Rochery, M.</creatorcontrib><creatorcontrib>Rahim, M.</creatorcontrib><creatorcontrib>Gupta, N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on speech and audio processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schapire, R.E.</au><au>Rochery, M.</au><au>Rahim, M.</au><au>Gupta, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting with prior knowledge for call classification</atitle><jtitle>IEEE transactions on speech and audio processing</jtitle><stitle>T-SAP</stitle><date>2005-03-01</date><risdate>2005</risdate><volume>13</volume><issue>2</issue><spage>174</spage><epage>181</epage><pages>174-181</pages><issn>1063-6676</issn><issn>2329-9290</issn><eissn>1558-2353</eissn><eissn>2329-9304</eissn><coden>IESPEJ</coden><abstract>The use of boosting for call classification in spoken language understanding is described in this paper. An extension to the AdaBoost algorithm is presented that permits the incorporation of prior knowledge of the application as a means of compensating for the large dependence on training data. We give a convergence result for the algorithm, and we describe experiments on four datasets showing that prior knowledge can substantially improve classification performance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSA.2004.840937</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6676
ispartof IEEE transactions on speech and audio processing, 2005-03, Vol.13 (2), p.174-181
issn 1063-6676
2329-9290
1558-2353
2329-9304
language eng
recordid cdi_proquest_miscellaneous_919917038
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Boosting
call classification
Classification
Convergence
dialogue systems
Exact sciences and technology
Humans
Information, signal and communications theory
Learning systems
Loss measurement
Natural languages
Performance enhancement
prior knowledge
Robustness
Signal processing
Speech
Speech processing
Speech recognition
spoken language understanding
Telecommunications and information theory
Text categorization
Training
Training data
title Boosting with prior knowledge for call classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20with%20prior%20knowledge%20for%20call%20classification&rft.jtitle=IEEE%20transactions%20on%20speech%20and%20audio%20processing&rft.au=Schapire,%20R.E.&rft.date=2005-03-01&rft.volume=13&rft.issue=2&rft.spage=174&rft.epage=181&rft.pages=174-181&rft.issn=1063-6676&rft.eissn=1558-2353&rft.coden=IESPEJ&rft_id=info:doi/10.1109/TSA.2004.840937&rft_dat=%3Cproquest_RIE%3E2425186881%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883395491&rft_id=info:pmid/&rft_ieee_id=1395962&rfr_iscdi=true