Boosting with prior knowledge for call classification
The use of boosting for call classification in spoken language understanding is described in this paper. An extension to the AdaBoost algorithm is presented that permits the incorporation of prior knowledge of the application as a means of compensating for the large dependence on training data. We g...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on speech and audio processing 2005-03, Vol.13 (2), p.174-181 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 181 |
---|---|
container_issue | 2 |
container_start_page | 174 |
container_title | IEEE transactions on speech and audio processing |
container_volume | 13 |
creator | Schapire, R.E. Rochery, M. Rahim, M. Gupta, N. |
description | The use of boosting for call classification in spoken language understanding is described in this paper. An extension to the AdaBoost algorithm is presented that permits the incorporation of prior knowledge of the application as a means of compensating for the large dependence on training data. We give a convergence result for the algorithm, and we describe experiments on four datasets showing that prior knowledge can substantially improve classification performance. |
doi_str_mv | 10.1109/TSA.2004.840937 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_919917038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1395962</ieee_id><sourcerecordid>2425186881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-392ac99b0a8425ac9443bb4cb19e9a4566591c517a533f355bc1a71f6f80056d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKtnD14WQT1tm2wemzlq8QUFD9ZzyKbZmrrd1GRL8d-bsoWCB08zw3wzk3wIXRI8IgTDePZ-PyowZiPJMNDyCA0I5zIvKKfHKceC5kKU4hSdxbjEGEtSsgHiD97HzrWLbOu6z2wdnA_ZV-u3jZ0vbFanyuimyUyjY3S1M7pzvj1HJ7Vuor3YxyH6eHqcTV7y6dvz6-R-mhsqSZdTKLQBqLCWrOApZYxWFTMVAQuacSE4EMNJqTmlNeW8MkSXpBa1xJiLOR2iu37vOvjvjY2dWrlobNPo1vpNVEAASImpTOTtv2RRAoCUO_D6D7j0m9CmX6jUpcAZkASNe8gEH2OwtUpiVjr8KILVzrZKttXOtuptp4mb_Vodk7A66Na4eBgTnKZ3QuKues5Zaw_tdBdEQX8BydCF2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883395491</pqid></control><display><type>article</type><title>Boosting with prior knowledge for call classification</title><source>IEEE Electronic Library (IEL)</source><creator>Schapire, R.E. ; Rochery, M. ; Rahim, M. ; Gupta, N.</creator><creatorcontrib>Schapire, R.E. ; Rochery, M. ; Rahim, M. ; Gupta, N.</creatorcontrib><description>The use of boosting for call classification in spoken language understanding is described in this paper. An extension to the AdaBoost algorithm is presented that permits the incorporation of prior knowledge of the application as a means of compensating for the large dependence on training data. We give a convergence result for the algorithm, and we describe experiments on four datasets showing that prior knowledge can substantially improve classification performance.</description><identifier>ISSN: 1063-6676</identifier><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 1558-2353</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TSA.2004.840937</identifier><identifier>CODEN: IESPEJ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Boosting ; call classification ; Classification ; Convergence ; dialogue systems ; Exact sciences and technology ; Humans ; Information, signal and communications theory ; Learning systems ; Loss measurement ; Natural languages ; Performance enhancement ; prior knowledge ; Robustness ; Signal processing ; Speech ; Speech processing ; Speech recognition ; spoken language understanding ; Telecommunications and information theory ; Text categorization ; Training ; Training data</subject><ispartof>IEEE transactions on speech and audio processing, 2005-03, Vol.13 (2), p.174-181</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-392ac99b0a8425ac9443bb4cb19e9a4566591c517a533f355bc1a71f6f80056d3</citedby><cites>FETCH-LOGICAL-c381t-392ac99b0a8425ac9443bb4cb19e9a4566591c517a533f355bc1a71f6f80056d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1395962$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1395962$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16537039$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schapire, R.E.</creatorcontrib><creatorcontrib>Rochery, M.</creatorcontrib><creatorcontrib>Rahim, M.</creatorcontrib><creatorcontrib>Gupta, N.</creatorcontrib><title>Boosting with prior knowledge for call classification</title><title>IEEE transactions on speech and audio processing</title><addtitle>T-SAP</addtitle><description>The use of boosting for call classification in spoken language understanding is described in this paper. An extension to the AdaBoost algorithm is presented that permits the incorporation of prior knowledge of the application as a means of compensating for the large dependence on training data. We give a convergence result for the algorithm, and we describe experiments on four datasets showing that prior knowledge can substantially improve classification performance.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Boosting</subject><subject>call classification</subject><subject>Classification</subject><subject>Convergence</subject><subject>dialogue systems</subject><subject>Exact sciences and technology</subject><subject>Humans</subject><subject>Information, signal and communications theory</subject><subject>Learning systems</subject><subject>Loss measurement</subject><subject>Natural languages</subject><subject>Performance enhancement</subject><subject>prior knowledge</subject><subject>Robustness</subject><subject>Signal processing</subject><subject>Speech</subject><subject>Speech processing</subject><subject>Speech recognition</subject><subject>spoken language understanding</subject><subject>Telecommunications and information theory</subject><subject>Text categorization</subject><subject>Training</subject><subject>Training data</subject><issn>1063-6676</issn><issn>2329-9290</issn><issn>1558-2353</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kEtLAzEQgIMoWKtnD14WQT1tm2wemzlq8QUFD9ZzyKbZmrrd1GRL8d-bsoWCB08zw3wzk3wIXRI8IgTDePZ-PyowZiPJMNDyCA0I5zIvKKfHKceC5kKU4hSdxbjEGEtSsgHiD97HzrWLbOu6z2wdnA_ZV-u3jZ0vbFanyuimyUyjY3S1M7pzvj1HJ7Vuor3YxyH6eHqcTV7y6dvz6-R-mhsqSZdTKLQBqLCWrOApZYxWFTMVAQuacSE4EMNJqTmlNeW8MkSXpBa1xJiLOR2iu37vOvjvjY2dWrlobNPo1vpNVEAASImpTOTtv2RRAoCUO_D6D7j0m9CmX6jUpcAZkASNe8gEH2OwtUpiVjr8KILVzrZKttXOtuptp4mb_Vodk7A66Na4eBgTnKZ3QuKues5Zaw_tdBdEQX8BydCF2A</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Schapire, R.E.</creator><creator>Rochery, M.</creator><creator>Rahim, M.</creator><creator>Gupta, N.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050301</creationdate><title>Boosting with prior knowledge for call classification</title><author>Schapire, R.E. ; Rochery, M. ; Rahim, M. ; Gupta, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-392ac99b0a8425ac9443bb4cb19e9a4566591c517a533f355bc1a71f6f80056d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Boosting</topic><topic>call classification</topic><topic>Classification</topic><topic>Convergence</topic><topic>dialogue systems</topic><topic>Exact sciences and technology</topic><topic>Humans</topic><topic>Information, signal and communications theory</topic><topic>Learning systems</topic><topic>Loss measurement</topic><topic>Natural languages</topic><topic>Performance enhancement</topic><topic>prior knowledge</topic><topic>Robustness</topic><topic>Signal processing</topic><topic>Speech</topic><topic>Speech processing</topic><topic>Speech recognition</topic><topic>spoken language understanding</topic><topic>Telecommunications and information theory</topic><topic>Text categorization</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schapire, R.E.</creatorcontrib><creatorcontrib>Rochery, M.</creatorcontrib><creatorcontrib>Rahim, M.</creatorcontrib><creatorcontrib>Gupta, N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on speech and audio processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schapire, R.E.</au><au>Rochery, M.</au><au>Rahim, M.</au><au>Gupta, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting with prior knowledge for call classification</atitle><jtitle>IEEE transactions on speech and audio processing</jtitle><stitle>T-SAP</stitle><date>2005-03-01</date><risdate>2005</risdate><volume>13</volume><issue>2</issue><spage>174</spage><epage>181</epage><pages>174-181</pages><issn>1063-6676</issn><issn>2329-9290</issn><eissn>1558-2353</eissn><eissn>2329-9304</eissn><coden>IESPEJ</coden><abstract>The use of boosting for call classification in spoken language understanding is described in this paper. An extension to the AdaBoost algorithm is presented that permits the incorporation of prior knowledge of the application as a means of compensating for the large dependence on training data. We give a convergence result for the algorithm, and we describe experiments on four datasets showing that prior knowledge can substantially improve classification performance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSA.2004.840937</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6676 |
ispartof | IEEE transactions on speech and audio processing, 2005-03, Vol.13 (2), p.174-181 |
issn | 1063-6676 2329-9290 1558-2353 2329-9304 |
language | eng |
recordid | cdi_proquest_miscellaneous_919917038 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Boosting call classification Classification Convergence dialogue systems Exact sciences and technology Humans Information, signal and communications theory Learning systems Loss measurement Natural languages Performance enhancement prior knowledge Robustness Signal processing Speech Speech processing Speech recognition spoken language understanding Telecommunications and information theory Text categorization Training Training data |
title | Boosting with prior knowledge for call classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20with%20prior%20knowledge%20for%20call%20classification&rft.jtitle=IEEE%20transactions%20on%20speech%20and%20audio%20processing&rft.au=Schapire,%20R.E.&rft.date=2005-03-01&rft.volume=13&rft.issue=2&rft.spage=174&rft.epage=181&rft.pages=174-181&rft.issn=1063-6676&rft.eissn=1558-2353&rft.coden=IESPEJ&rft_id=info:doi/10.1109/TSA.2004.840937&rft_dat=%3Cproquest_RIE%3E2425186881%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883395491&rft_id=info:pmid/&rft_ieee_id=1395962&rfr_iscdi=true |