Thin monocrystalline silicon solar cells

One of the most effective approaches for a cost reduction of crystalline silicon solar cells is the better utilization of the crystals by cutting thinner wafers. However, such thin silicon wafers must have sufficient mechanical strength to maintain a high mechanical yield in cell and module manufact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 1999-10, Vol.46 (10), p.2055-2061
Hauptverfasser: Munzer, K.A., Holdermann, K.T., Schlosser, R.E., Sterk, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2061
container_issue 10
container_start_page 2055
container_title IEEE transactions on electron devices
container_volume 46
creator Munzer, K.A.
Holdermann, K.T.
Schlosser, R.E.
Sterk, S.
description One of the most effective approaches for a cost reduction of crystalline silicon solar cells is the better utilization of the crystals by cutting thinner wafers. However, such thin silicon wafers must have sufficient mechanical strength to maintain a high mechanical yield in cell and module manufacturing. The electrical performance of thin cells drops strongly with decreasing cell thickness if solar cell manufacturing technologies without a backside passivation or a back-surface-field (BSF) are applied. However, with the application of a BSF, stable efficiencies of over 17%, even with decreasing cell thickness, have been reached. Thin solar cells show lower photodegradation, as is normally observed for Cz-silicon cells with today's standard thickness (about 300 /spl mu/m) because of a higher ratio of the diffusion length compared to the cell thickness. Cells of about 100-150 /spl mu/m thickness fabricated with the production Cz-silicon show almost no photodegradation. Furthermore, thin boron BSF cells have a pronounced efficiency response under backside illumination. The backside efficiency increases with decreasing cell thickness and reaches 60% of the frontside cell efficiency for 150 /spl mu/m solar cells and also for solar modules assembled of 36 cells of a thickness of 150 /spl mu/m. Assuming, for example, a rearside illumination of 150 W/m/sup 2/, this results in an increased module power output of about 10% relatively.
doi_str_mv 10.1109/16.791996
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_919916991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>791996</ieee_id><sourcerecordid>919916991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-50e3743ed96861b321c81d0a16d3160bf96f63d77687eb5943396bf2f3fa6fd83</originalsourceid><addsrcrecordid>eNp90D1rwzAQBmBRWmiadujayVDox-BUZ9knaSyhXxDoks7CliWiolip5Az597Vx6NjhOI57OI6XkGugCwAqnwAXXIKUeEJmUFU8l1jiKZlRCiKXTLBzcpHS9zBiWRYz8rDeuC7bhi7oeEh97b3rTJacdzp0WQq-jpk23qdLcmZrn8zVsc_J1-vLevmerz7fPpbPq1wzLvu8oobxkplWokBoWAFaQEtrwJYB0sZKtMhazlFw01SyZExiYwvLbI22FWxObqe7IfVOJe16ozfDL53RvSoopUj5qO4ntYvhZ29Sr7YujX_WnQn7pMYIAIca5N2_shBYVFCO8HGCOoaUorFqF922jgcFVI3ZKkA1ZTvYm8k6Y8yfOy5_AXbpcXM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28625141</pqid></control><display><type>article</type><title>Thin monocrystalline silicon solar cells</title><source>IEEE Electronic Library (IEL)</source><creator>Munzer, K.A. ; Holdermann, K.T. ; Schlosser, R.E. ; Sterk, S.</creator><creatorcontrib>Munzer, K.A. ; Holdermann, K.T. ; Schlosser, R.E. ; Sterk, S. ; Siemens Solar GmbH, Munich (DE)</creatorcontrib><description>One of the most effective approaches for a cost reduction of crystalline silicon solar cells is the better utilization of the crystals by cutting thinner wafers. However, such thin silicon wafers must have sufficient mechanical strength to maintain a high mechanical yield in cell and module manufacturing. The electrical performance of thin cells drops strongly with decreasing cell thickness if solar cell manufacturing technologies without a backside passivation or a back-surface-field (BSF) are applied. However, with the application of a BSF, stable efficiencies of over 17%, even with decreasing cell thickness, have been reached. Thin solar cells show lower photodegradation, as is normally observed for Cz-silicon cells with today's standard thickness (about 300 /spl mu/m) because of a higher ratio of the diffusion length compared to the cell thickness. Cells of about 100-150 /spl mu/m thickness fabricated with the production Cz-silicon show almost no photodegradation. Furthermore, thin boron BSF cells have a pronounced efficiency response under backside illumination. The backside efficiency increases with decreasing cell thickness and reaches 60% of the frontside cell efficiency for 150 /spl mu/m solar cells and also for solar modules assembled of 36 cells of a thickness of 150 /spl mu/m. Assuming, for example, a rearside illumination of 150 W/m/sup 2/, this results in an increased module power output of about 10% relatively.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.791996</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>COST ; Devices ; FABRICATION ; Illumination ; MATERIALS SCIENCE ; MECHANICAL PROPERTIES ; Modules ; Photodegradation ; Photovoltaic cells ; Silicon ; SILICON SOLAR CELLS ; Solar cells ; SOLAR ENERGY ; Wafers</subject><ispartof>IEEE transactions on electron devices, 1999-10, Vol.46 (10), p.2055-2061</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-50e3743ed96861b321c81d0a16d3160bf96f63d77687eb5943396bf2f3fa6fd83</citedby><cites>FETCH-LOGICAL-c379t-50e3743ed96861b321c81d0a16d3160bf96f63d77687eb5943396bf2f3fa6fd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/791996$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/791996$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/20006078$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Munzer, K.A.</creatorcontrib><creatorcontrib>Holdermann, K.T.</creatorcontrib><creatorcontrib>Schlosser, R.E.</creatorcontrib><creatorcontrib>Sterk, S.</creatorcontrib><creatorcontrib>Siemens Solar GmbH, Munich (DE)</creatorcontrib><title>Thin monocrystalline silicon solar cells</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>One of the most effective approaches for a cost reduction of crystalline silicon solar cells is the better utilization of the crystals by cutting thinner wafers. However, such thin silicon wafers must have sufficient mechanical strength to maintain a high mechanical yield in cell and module manufacturing. The electrical performance of thin cells drops strongly with decreasing cell thickness if solar cell manufacturing technologies without a backside passivation or a back-surface-field (BSF) are applied. However, with the application of a BSF, stable efficiencies of over 17%, even with decreasing cell thickness, have been reached. Thin solar cells show lower photodegradation, as is normally observed for Cz-silicon cells with today's standard thickness (about 300 /spl mu/m) because of a higher ratio of the diffusion length compared to the cell thickness. Cells of about 100-150 /spl mu/m thickness fabricated with the production Cz-silicon show almost no photodegradation. Furthermore, thin boron BSF cells have a pronounced efficiency response under backside illumination. The backside efficiency increases with decreasing cell thickness and reaches 60% of the frontside cell efficiency for 150 /spl mu/m solar cells and also for solar modules assembled of 36 cells of a thickness of 150 /spl mu/m. Assuming, for example, a rearside illumination of 150 W/m/sup 2/, this results in an increased module power output of about 10% relatively.</description><subject>COST</subject><subject>Devices</subject><subject>FABRICATION</subject><subject>Illumination</subject><subject>MATERIALS SCIENCE</subject><subject>MECHANICAL PROPERTIES</subject><subject>Modules</subject><subject>Photodegradation</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>SILICON SOLAR CELLS</subject><subject>Solar cells</subject><subject>SOLAR ENERGY</subject><subject>Wafers</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90D1rwzAQBmBRWmiadujayVDox-BUZ9knaSyhXxDoks7CliWiolip5Az597Vx6NjhOI57OI6XkGugCwAqnwAXXIKUeEJmUFU8l1jiKZlRCiKXTLBzcpHS9zBiWRYz8rDeuC7bhi7oeEh97b3rTJacdzp0WQq-jpk23qdLcmZrn8zVsc_J1-vLevmerz7fPpbPq1wzLvu8oobxkplWokBoWAFaQEtrwJYB0sZKtMhazlFw01SyZExiYwvLbI22FWxObqe7IfVOJe16ozfDL53RvSoopUj5qO4ntYvhZ29Sr7YujX_WnQn7pMYIAIca5N2_shBYVFCO8HGCOoaUorFqF922jgcFVI3ZKkA1ZTvYm8k6Y8yfOy5_AXbpcXM</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Munzer, K.A.</creator><creator>Holdermann, K.T.</creator><creator>Schlosser, R.E.</creator><creator>Sterk, S.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>OTOTI</scope></search><sort><creationdate>19991001</creationdate><title>Thin monocrystalline silicon solar cells</title><author>Munzer, K.A. ; Holdermann, K.T. ; Schlosser, R.E. ; Sterk, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-50e3743ed96861b321c81d0a16d3160bf96f63d77687eb5943396bf2f3fa6fd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>COST</topic><topic>Devices</topic><topic>FABRICATION</topic><topic>Illumination</topic><topic>MATERIALS SCIENCE</topic><topic>MECHANICAL PROPERTIES</topic><topic>Modules</topic><topic>Photodegradation</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>SILICON SOLAR CELLS</topic><topic>Solar cells</topic><topic>SOLAR ENERGY</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munzer, K.A.</creatorcontrib><creatorcontrib>Holdermann, K.T.</creatorcontrib><creatorcontrib>Schlosser, R.E.</creatorcontrib><creatorcontrib>Sterk, S.</creatorcontrib><creatorcontrib>Siemens Solar GmbH, Munich (DE)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Munzer, K.A.</au><au>Holdermann, K.T.</au><au>Schlosser, R.E.</au><au>Sterk, S.</au><aucorp>Siemens Solar GmbH, Munich (DE)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin monocrystalline silicon solar cells</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>1999-10-01</date><risdate>1999</risdate><volume>46</volume><issue>10</issue><spage>2055</spage><epage>2061</epage><pages>2055-2061</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>One of the most effective approaches for a cost reduction of crystalline silicon solar cells is the better utilization of the crystals by cutting thinner wafers. However, such thin silicon wafers must have sufficient mechanical strength to maintain a high mechanical yield in cell and module manufacturing. The electrical performance of thin cells drops strongly with decreasing cell thickness if solar cell manufacturing technologies without a backside passivation or a back-surface-field (BSF) are applied. However, with the application of a BSF, stable efficiencies of over 17%, even with decreasing cell thickness, have been reached. Thin solar cells show lower photodegradation, as is normally observed for Cz-silicon cells with today's standard thickness (about 300 /spl mu/m) because of a higher ratio of the diffusion length compared to the cell thickness. Cells of about 100-150 /spl mu/m thickness fabricated with the production Cz-silicon show almost no photodegradation. Furthermore, thin boron BSF cells have a pronounced efficiency response under backside illumination. The backside efficiency increases with decreasing cell thickness and reaches 60% of the frontside cell efficiency for 150 /spl mu/m solar cells and also for solar modules assembled of 36 cells of a thickness of 150 /spl mu/m. Assuming, for example, a rearside illumination of 150 W/m/sup 2/, this results in an increased module power output of about 10% relatively.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/16.791996</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 1999-10, Vol.46 (10), p.2055-2061
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_miscellaneous_919916991
source IEEE Electronic Library (IEL)
subjects COST
Devices
FABRICATION
Illumination
MATERIALS SCIENCE
MECHANICAL PROPERTIES
Modules
Photodegradation
Photovoltaic cells
Silicon
SILICON SOLAR CELLS
Solar cells
SOLAR ENERGY
Wafers
title Thin monocrystalline silicon solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin%20monocrystalline%20silicon%20solar%20cells&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Munzer,%20K.A.&rft.aucorp=Siemens%20Solar%20GmbH,%20Munich%20(DE)&rft.date=1999-10-01&rft.volume=46&rft.issue=10&rft.spage=2055&rft.epage=2061&rft.pages=2055-2061&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.791996&rft_dat=%3Cproquest_RIE%3E919916991%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28625141&rft_id=info:pmid/&rft_ieee_id=791996&rfr_iscdi=true