Thin monocrystalline silicon solar cells
One of the most effective approaches for a cost reduction of crystalline silicon solar cells is the better utilization of the crystals by cutting thinner wafers. However, such thin silicon wafers must have sufficient mechanical strength to maintain a high mechanical yield in cell and module manufact...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 1999-10, Vol.46 (10), p.2055-2061 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2061 |
---|---|
container_issue | 10 |
container_start_page | 2055 |
container_title | IEEE transactions on electron devices |
container_volume | 46 |
creator | Munzer, K.A. Holdermann, K.T. Schlosser, R.E. Sterk, S. |
description | One of the most effective approaches for a cost reduction of crystalline silicon solar cells is the better utilization of the crystals by cutting thinner wafers. However, such thin silicon wafers must have sufficient mechanical strength to maintain a high mechanical yield in cell and module manufacturing. The electrical performance of thin cells drops strongly with decreasing cell thickness if solar cell manufacturing technologies without a backside passivation or a back-surface-field (BSF) are applied. However, with the application of a BSF, stable efficiencies of over 17%, even with decreasing cell thickness, have been reached. Thin solar cells show lower photodegradation, as is normally observed for Cz-silicon cells with today's standard thickness (about 300 /spl mu/m) because of a higher ratio of the diffusion length compared to the cell thickness. Cells of about 100-150 /spl mu/m thickness fabricated with the production Cz-silicon show almost no photodegradation. Furthermore, thin boron BSF cells have a pronounced efficiency response under backside illumination. The backside efficiency increases with decreasing cell thickness and reaches 60% of the frontside cell efficiency for 150 /spl mu/m solar cells and also for solar modules assembled of 36 cells of a thickness of 150 /spl mu/m. Assuming, for example, a rearside illumination of 150 W/m/sup 2/, this results in an increased module power output of about 10% relatively. |
doi_str_mv | 10.1109/16.791996 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_919916991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>791996</ieee_id><sourcerecordid>919916991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-50e3743ed96861b321c81d0a16d3160bf96f63d77687eb5943396bf2f3fa6fd83</originalsourceid><addsrcrecordid>eNp90D1rwzAQBmBRWmiadujayVDox-BUZ9knaSyhXxDoks7CliWiolip5Az597Vx6NjhOI57OI6XkGugCwAqnwAXXIKUeEJmUFU8l1jiKZlRCiKXTLBzcpHS9zBiWRYz8rDeuC7bhi7oeEh97b3rTJacdzp0WQq-jpk23qdLcmZrn8zVsc_J1-vLevmerz7fPpbPq1wzLvu8oobxkplWokBoWAFaQEtrwJYB0sZKtMhazlFw01SyZExiYwvLbI22FWxObqe7IfVOJe16ozfDL53RvSoopUj5qO4ntYvhZ29Sr7YujX_WnQn7pMYIAIca5N2_shBYVFCO8HGCOoaUorFqF922jgcFVI3ZKkA1ZTvYm8k6Y8yfOy5_AXbpcXM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28625141</pqid></control><display><type>article</type><title>Thin monocrystalline silicon solar cells</title><source>IEEE Electronic Library (IEL)</source><creator>Munzer, K.A. ; Holdermann, K.T. ; Schlosser, R.E. ; Sterk, S.</creator><creatorcontrib>Munzer, K.A. ; Holdermann, K.T. ; Schlosser, R.E. ; Sterk, S. ; Siemens Solar GmbH, Munich (DE)</creatorcontrib><description>One of the most effective approaches for a cost reduction of crystalline silicon solar cells is the better utilization of the crystals by cutting thinner wafers. However, such thin silicon wafers must have sufficient mechanical strength to maintain a high mechanical yield in cell and module manufacturing. The electrical performance of thin cells drops strongly with decreasing cell thickness if solar cell manufacturing technologies without a backside passivation or a back-surface-field (BSF) are applied. However, with the application of a BSF, stable efficiencies of over 17%, even with decreasing cell thickness, have been reached. Thin solar cells show lower photodegradation, as is normally observed for Cz-silicon cells with today's standard thickness (about 300 /spl mu/m) because of a higher ratio of the diffusion length compared to the cell thickness. Cells of about 100-150 /spl mu/m thickness fabricated with the production Cz-silicon show almost no photodegradation. Furthermore, thin boron BSF cells have a pronounced efficiency response under backside illumination. The backside efficiency increases with decreasing cell thickness and reaches 60% of the frontside cell efficiency for 150 /spl mu/m solar cells and also for solar modules assembled of 36 cells of a thickness of 150 /spl mu/m. Assuming, for example, a rearside illumination of 150 W/m/sup 2/, this results in an increased module power output of about 10% relatively.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.791996</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>COST ; Devices ; FABRICATION ; Illumination ; MATERIALS SCIENCE ; MECHANICAL PROPERTIES ; Modules ; Photodegradation ; Photovoltaic cells ; Silicon ; SILICON SOLAR CELLS ; Solar cells ; SOLAR ENERGY ; Wafers</subject><ispartof>IEEE transactions on electron devices, 1999-10, Vol.46 (10), p.2055-2061</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-50e3743ed96861b321c81d0a16d3160bf96f63d77687eb5943396bf2f3fa6fd83</citedby><cites>FETCH-LOGICAL-c379t-50e3743ed96861b321c81d0a16d3160bf96f63d77687eb5943396bf2f3fa6fd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/791996$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/791996$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/20006078$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Munzer, K.A.</creatorcontrib><creatorcontrib>Holdermann, K.T.</creatorcontrib><creatorcontrib>Schlosser, R.E.</creatorcontrib><creatorcontrib>Sterk, S.</creatorcontrib><creatorcontrib>Siemens Solar GmbH, Munich (DE)</creatorcontrib><title>Thin monocrystalline silicon solar cells</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>One of the most effective approaches for a cost reduction of crystalline silicon solar cells is the better utilization of the crystals by cutting thinner wafers. However, such thin silicon wafers must have sufficient mechanical strength to maintain a high mechanical yield in cell and module manufacturing. The electrical performance of thin cells drops strongly with decreasing cell thickness if solar cell manufacturing technologies without a backside passivation or a back-surface-field (BSF) are applied. However, with the application of a BSF, stable efficiencies of over 17%, even with decreasing cell thickness, have been reached. Thin solar cells show lower photodegradation, as is normally observed for Cz-silicon cells with today's standard thickness (about 300 /spl mu/m) because of a higher ratio of the diffusion length compared to the cell thickness. Cells of about 100-150 /spl mu/m thickness fabricated with the production Cz-silicon show almost no photodegradation. Furthermore, thin boron BSF cells have a pronounced efficiency response under backside illumination. The backside efficiency increases with decreasing cell thickness and reaches 60% of the frontside cell efficiency for 150 /spl mu/m solar cells and also for solar modules assembled of 36 cells of a thickness of 150 /spl mu/m. Assuming, for example, a rearside illumination of 150 W/m/sup 2/, this results in an increased module power output of about 10% relatively.</description><subject>COST</subject><subject>Devices</subject><subject>FABRICATION</subject><subject>Illumination</subject><subject>MATERIALS SCIENCE</subject><subject>MECHANICAL PROPERTIES</subject><subject>Modules</subject><subject>Photodegradation</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>SILICON SOLAR CELLS</subject><subject>Solar cells</subject><subject>SOLAR ENERGY</subject><subject>Wafers</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90D1rwzAQBmBRWmiadujayVDox-BUZ9knaSyhXxDoks7CliWiolip5Az597Vx6NjhOI57OI6XkGugCwAqnwAXXIKUeEJmUFU8l1jiKZlRCiKXTLBzcpHS9zBiWRYz8rDeuC7bhi7oeEh97b3rTJacdzp0WQq-jpk23qdLcmZrn8zVsc_J1-vLevmerz7fPpbPq1wzLvu8oobxkplWokBoWAFaQEtrwJYB0sZKtMhazlFw01SyZExiYwvLbI22FWxObqe7IfVOJe16ozfDL53RvSoopUj5qO4ntYvhZ29Sr7YujX_WnQn7pMYIAIca5N2_shBYVFCO8HGCOoaUorFqF922jgcFVI3ZKkA1ZTvYm8k6Y8yfOy5_AXbpcXM</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Munzer, K.A.</creator><creator>Holdermann, K.T.</creator><creator>Schlosser, R.E.</creator><creator>Sterk, S.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>OTOTI</scope></search><sort><creationdate>19991001</creationdate><title>Thin monocrystalline silicon solar cells</title><author>Munzer, K.A. ; Holdermann, K.T. ; Schlosser, R.E. ; Sterk, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-50e3743ed96861b321c81d0a16d3160bf96f63d77687eb5943396bf2f3fa6fd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>COST</topic><topic>Devices</topic><topic>FABRICATION</topic><topic>Illumination</topic><topic>MATERIALS SCIENCE</topic><topic>MECHANICAL PROPERTIES</topic><topic>Modules</topic><topic>Photodegradation</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>SILICON SOLAR CELLS</topic><topic>Solar cells</topic><topic>SOLAR ENERGY</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munzer, K.A.</creatorcontrib><creatorcontrib>Holdermann, K.T.</creatorcontrib><creatorcontrib>Schlosser, R.E.</creatorcontrib><creatorcontrib>Sterk, S.</creatorcontrib><creatorcontrib>Siemens Solar GmbH, Munich (DE)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Munzer, K.A.</au><au>Holdermann, K.T.</au><au>Schlosser, R.E.</au><au>Sterk, S.</au><aucorp>Siemens Solar GmbH, Munich (DE)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin monocrystalline silicon solar cells</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>1999-10-01</date><risdate>1999</risdate><volume>46</volume><issue>10</issue><spage>2055</spage><epage>2061</epage><pages>2055-2061</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>One of the most effective approaches for a cost reduction of crystalline silicon solar cells is the better utilization of the crystals by cutting thinner wafers. However, such thin silicon wafers must have sufficient mechanical strength to maintain a high mechanical yield in cell and module manufacturing. The electrical performance of thin cells drops strongly with decreasing cell thickness if solar cell manufacturing technologies without a backside passivation or a back-surface-field (BSF) are applied. However, with the application of a BSF, stable efficiencies of over 17%, even with decreasing cell thickness, have been reached. Thin solar cells show lower photodegradation, as is normally observed for Cz-silicon cells with today's standard thickness (about 300 /spl mu/m) because of a higher ratio of the diffusion length compared to the cell thickness. Cells of about 100-150 /spl mu/m thickness fabricated with the production Cz-silicon show almost no photodegradation. Furthermore, thin boron BSF cells have a pronounced efficiency response under backside illumination. The backside efficiency increases with decreasing cell thickness and reaches 60% of the frontside cell efficiency for 150 /spl mu/m solar cells and also for solar modules assembled of 36 cells of a thickness of 150 /spl mu/m. Assuming, for example, a rearside illumination of 150 W/m/sup 2/, this results in an increased module power output of about 10% relatively.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/16.791996</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 1999-10, Vol.46 (10), p.2055-2061 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_miscellaneous_919916991 |
source | IEEE Electronic Library (IEL) |
subjects | COST Devices FABRICATION Illumination MATERIALS SCIENCE MECHANICAL PROPERTIES Modules Photodegradation Photovoltaic cells Silicon SILICON SOLAR CELLS Solar cells SOLAR ENERGY Wafers |
title | Thin monocrystalline silicon solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin%20monocrystalline%20silicon%20solar%20cells&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Munzer,%20K.A.&rft.aucorp=Siemens%20Solar%20GmbH,%20Munich%20(DE)&rft.date=1999-10-01&rft.volume=46&rft.issue=10&rft.spage=2055&rft.epage=2061&rft.pages=2055-2061&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.791996&rft_dat=%3Cproquest_RIE%3E919916991%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28625141&rft_id=info:pmid/&rft_ieee_id=791996&rfr_iscdi=true |