Optimal catalyst layer structure of polymer electrolyte membrane fuel cell
In a membrane electrode assembly (MEA) of polymer electrolyte membrane fuel cells, the structure and morphology of catalyst layers are important to reduce electrochemical resistance and thus obtain high single cell performance. In this study, the catalyst layers fabricated by two catalyst coating me...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2011-08, Vol.36 (16), p.9876-9885 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9885 |
---|---|
container_issue | 16 |
container_start_page | 9876 |
container_title | International journal of hydrogen energy |
container_volume | 36 |
creator | Hwang, Doo Sung Park, Chi Hoon Yi, Sung Chul Lee, Young Moo |
description | In a membrane electrode assembly (MEA) of polymer electrolyte membrane fuel cells, the structure and morphology of catalyst layers are important to reduce electrochemical resistance and thus obtain high single cell performance. In this study, the catalyst layers fabricated by two catalyst coating methods, spraying method and screen printing method, were characterized by the microscopic images of catalyst layer surface, pore distributions, and electrochemical performances to study the effective MEA fabrication process. For this purpose, a micro-porous layer (MPL) was applied to two different coating methods intending to increase single cell performances by enhancing mass transport. Here, the morphology and structure of catalyst layers were controlled by different catalyst coating methods without varying the ionomer ratio. In particular, MEA fabricated by a screen printing method in a catalyst coated substrate showed uniformly dispersed pores for maximum mass transport. This catalyst layer on micro porous layer resulted in lower ohmic resistance of 0.087 Ω cm
2 and low mass transport resistance because of enhanced adhesion between catalyst layers and a membrane and improved mass transport of fuel and vapors. Consequently, higher electrochemical performance of current density of 1000 mA cm
-2 at 0.6 V and 1600 mAcm
−2 under 0.5 V came from these low electrochemical resistances comparing the catalyst layer fabricated by a spraying method on membranes because adhesion between catalyst layers and a membrane was much enhanced by screen printing method.
► Catalyst coating methods can control the catalyst layer structure. ► Screen printing method improves mass transfer of fuel and water management. ► Screen printing method suggests the solution for poor adhesion in CCS MEA fabrication. |
doi_str_mv | 10.1016/j.ijhydene.2011.05.073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919913910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319911012857</els_id><sourcerecordid>919913910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-96618c9023d1028948a91dd05c791ec6ae1a13d10fa202a544f98b15b0ff1c2e3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouH78BelFPLXOpOlHbor4ieBFzyGbTrBLul2TVOi_N8uuXj2FybzvzLwPYxcIBQLW16uiX33OHa2p4IBYQFVAUx6wBbaNzEvRNodsAWUNeYlSHrOTEFYA2ICQC_byton9oF1mdNRuDjFzeiafhegnEydP2WizzejmIX2SIxN9KiJlAw1Lr9eU2YmSm5w7Y0dWu0Dn-_eUfTzcv9895a9vj893t6-5EQJiLusaWyOBlx0Cb6VotcSug8o0EsnUmlDjtmc1B64rIaxsl1gtwVo0nMpTdrWbu_Hj10QhqqEP2wPSNeMUlEwpsZQISVnvlMaPIXiyauNTWD8rBLVlp1bql53aslNQqcQuGS_3K3Qw2tkU1PThz82F4G1Z8aS72eko5f3uyatgelob6nqfUKlu7P9b9QMibYjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919913910</pqid></control><display><type>article</type><title>Optimal catalyst layer structure of polymer electrolyte membrane fuel cell</title><source>Elsevier ScienceDirect Journals</source><creator>Hwang, Doo Sung ; Park, Chi Hoon ; Yi, Sung Chul ; Lee, Young Moo</creator><creatorcontrib>Hwang, Doo Sung ; Park, Chi Hoon ; Yi, Sung Chul ; Lee, Young Moo</creatorcontrib><description>In a membrane electrode assembly (MEA) of polymer electrolyte membrane fuel cells, the structure and morphology of catalyst layers are important to reduce electrochemical resistance and thus obtain high single cell performance. In this study, the catalyst layers fabricated by two catalyst coating methods, spraying method and screen printing method, were characterized by the microscopic images of catalyst layer surface, pore distributions, and electrochemical performances to study the effective MEA fabrication process. For this purpose, a micro-porous layer (MPL) was applied to two different coating methods intending to increase single cell performances by enhancing mass transport. Here, the morphology and structure of catalyst layers were controlled by different catalyst coating methods without varying the ionomer ratio. In particular, MEA fabricated by a screen printing method in a catalyst coated substrate showed uniformly dispersed pores for maximum mass transport. This catalyst layer on micro porous layer resulted in lower ohmic resistance of 0.087 Ω cm
2 and low mass transport resistance because of enhanced adhesion between catalyst layers and a membrane and improved mass transport of fuel and vapors. Consequently, higher electrochemical performance of current density of 1000 mA cm
-2 at 0.6 V and 1600 mAcm
−2 under 0.5 V came from these low electrochemical resistances comparing the catalyst layer fabricated by a spraying method on membranes because adhesion between catalyst layers and a membrane was much enhanced by screen printing method.
► Catalyst coating methods can control the catalyst layer structure. ► Screen printing method improves mass transfer of fuel and water management. ► Screen printing method suggests the solution for poor adhesion in CCS MEA fabrication.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2011.05.073</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adhesion ; Alternative fuels. Production and utilization ; Applied sciences ; Catalyst coated substrate (CCS) ; Catalyst layer structure ; Catalysts ; Coating ; Electrolytic cells ; Energy ; Exact sciences and technology ; Fuels ; Hydrogen ; Membrane electrode assembly (MEA) fabrication method ; Membranes ; Morphology ; Proton exchange membrane fuel cell (PEMFC) ; Screen printing ; Transport</subject><ispartof>International journal of hydrogen energy, 2011-08, Vol.36 (16), p.9876-9885</ispartof><rights>2011 Hydrogen Energy Publications, LLC.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-96618c9023d1028948a91dd05c791ec6ae1a13d10fa202a544f98b15b0ff1c2e3</citedby><cites>FETCH-LOGICAL-c440t-96618c9023d1028948a91dd05c791ec6ae1a13d10fa202a544f98b15b0ff1c2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2011.05.073$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24428352$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, Doo Sung</creatorcontrib><creatorcontrib>Park, Chi Hoon</creatorcontrib><creatorcontrib>Yi, Sung Chul</creatorcontrib><creatorcontrib>Lee, Young Moo</creatorcontrib><title>Optimal catalyst layer structure of polymer electrolyte membrane fuel cell</title><title>International journal of hydrogen energy</title><description>In a membrane electrode assembly (MEA) of polymer electrolyte membrane fuel cells, the structure and morphology of catalyst layers are important to reduce electrochemical resistance and thus obtain high single cell performance. In this study, the catalyst layers fabricated by two catalyst coating methods, spraying method and screen printing method, were characterized by the microscopic images of catalyst layer surface, pore distributions, and electrochemical performances to study the effective MEA fabrication process. For this purpose, a micro-porous layer (MPL) was applied to two different coating methods intending to increase single cell performances by enhancing mass transport. Here, the morphology and structure of catalyst layers were controlled by different catalyst coating methods without varying the ionomer ratio. In particular, MEA fabricated by a screen printing method in a catalyst coated substrate showed uniformly dispersed pores for maximum mass transport. This catalyst layer on micro porous layer resulted in lower ohmic resistance of 0.087 Ω cm
2 and low mass transport resistance because of enhanced adhesion between catalyst layers and a membrane and improved mass transport of fuel and vapors. Consequently, higher electrochemical performance of current density of 1000 mA cm
-2 at 0.6 V and 1600 mAcm
−2 under 0.5 V came from these low electrochemical resistances comparing the catalyst layer fabricated by a spraying method on membranes because adhesion between catalyst layers and a membrane was much enhanced by screen printing method.
► Catalyst coating methods can control the catalyst layer structure. ► Screen printing method improves mass transfer of fuel and water management. ► Screen printing method suggests the solution for poor adhesion in CCS MEA fabrication.</description><subject>Adhesion</subject><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Catalyst coated substrate (CCS)</subject><subject>Catalyst layer structure</subject><subject>Catalysts</subject><subject>Coating</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Membrane electrode assembly (MEA) fabrication method</subject><subject>Membranes</subject><subject>Morphology</subject><subject>Proton exchange membrane fuel cell (PEMFC)</subject><subject>Screen printing</subject><subject>Transport</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouH78BelFPLXOpOlHbor4ieBFzyGbTrBLul2TVOi_N8uuXj2FybzvzLwPYxcIBQLW16uiX33OHa2p4IBYQFVAUx6wBbaNzEvRNodsAWUNeYlSHrOTEFYA2ICQC_byton9oF1mdNRuDjFzeiafhegnEydP2WizzejmIX2SIxN9KiJlAw1Lr9eU2YmSm5w7Y0dWu0Dn-_eUfTzcv9895a9vj893t6-5EQJiLusaWyOBlx0Cb6VotcSug8o0EsnUmlDjtmc1B64rIaxsl1gtwVo0nMpTdrWbu_Hj10QhqqEP2wPSNeMUlEwpsZQISVnvlMaPIXiyauNTWD8rBLVlp1bql53aslNQqcQuGS_3K3Qw2tkU1PThz82F4G1Z8aS72eko5f3uyatgelob6nqfUKlu7P9b9QMibYjE</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Hwang, Doo Sung</creator><creator>Park, Chi Hoon</creator><creator>Yi, Sung Chul</creator><creator>Lee, Young Moo</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110801</creationdate><title>Optimal catalyst layer structure of polymer electrolyte membrane fuel cell</title><author>Hwang, Doo Sung ; Park, Chi Hoon ; Yi, Sung Chul ; Lee, Young Moo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-96618c9023d1028948a91dd05c791ec6ae1a13d10fa202a544f98b15b0ff1c2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adhesion</topic><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Catalyst coated substrate (CCS)</topic><topic>Catalyst layer structure</topic><topic>Catalysts</topic><topic>Coating</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Membrane electrode assembly (MEA) fabrication method</topic><topic>Membranes</topic><topic>Morphology</topic><topic>Proton exchange membrane fuel cell (PEMFC)</topic><topic>Screen printing</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Doo Sung</creatorcontrib><creatorcontrib>Park, Chi Hoon</creatorcontrib><creatorcontrib>Yi, Sung Chul</creatorcontrib><creatorcontrib>Lee, Young Moo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Doo Sung</au><au>Park, Chi Hoon</au><au>Yi, Sung Chul</au><au>Lee, Young Moo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal catalyst layer structure of polymer electrolyte membrane fuel cell</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>36</volume><issue>16</issue><spage>9876</spage><epage>9885</epage><pages>9876-9885</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>In a membrane electrode assembly (MEA) of polymer electrolyte membrane fuel cells, the structure and morphology of catalyst layers are important to reduce electrochemical resistance and thus obtain high single cell performance. In this study, the catalyst layers fabricated by two catalyst coating methods, spraying method and screen printing method, were characterized by the microscopic images of catalyst layer surface, pore distributions, and electrochemical performances to study the effective MEA fabrication process. For this purpose, a micro-porous layer (MPL) was applied to two different coating methods intending to increase single cell performances by enhancing mass transport. Here, the morphology and structure of catalyst layers were controlled by different catalyst coating methods without varying the ionomer ratio. In particular, MEA fabricated by a screen printing method in a catalyst coated substrate showed uniformly dispersed pores for maximum mass transport. This catalyst layer on micro porous layer resulted in lower ohmic resistance of 0.087 Ω cm
2 and low mass transport resistance because of enhanced adhesion between catalyst layers and a membrane and improved mass transport of fuel and vapors. Consequently, higher electrochemical performance of current density of 1000 mA cm
-2 at 0.6 V and 1600 mAcm
−2 under 0.5 V came from these low electrochemical resistances comparing the catalyst layer fabricated by a spraying method on membranes because adhesion between catalyst layers and a membrane was much enhanced by screen printing method.
► Catalyst coating methods can control the catalyst layer structure. ► Screen printing method improves mass transfer of fuel and water management. ► Screen printing method suggests the solution for poor adhesion in CCS MEA fabrication.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2011.05.073</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2011-08, Vol.36 (16), p.9876-9885 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_919913910 |
source | Elsevier ScienceDirect Journals |
subjects | Adhesion Alternative fuels. Production and utilization Applied sciences Catalyst coated substrate (CCS) Catalyst layer structure Catalysts Coating Electrolytic cells Energy Exact sciences and technology Fuels Hydrogen Membrane electrode assembly (MEA) fabrication method Membranes Morphology Proton exchange membrane fuel cell (PEMFC) Screen printing Transport |
title | Optimal catalyst layer structure of polymer electrolyte membrane fuel cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20catalyst%20layer%20structure%20of%20polymer%20electrolyte%20membrane%20fuel%20cell&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Hwang,%20Doo%20Sung&rft.date=2011-08-01&rft.volume=36&rft.issue=16&rft.spage=9876&rft.epage=9885&rft.pages=9876-9885&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2011.05.073&rft_dat=%3Cproquest_cross%3E919913910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919913910&rft_id=info:pmid/&rft_els_id=S0360319911012857&rfr_iscdi=true |