Mining multiple-level association rules in large databases

A top-down progressive deepening method is developed for efficient mining of multiple-level association rules from large transaction databases based on the a priori principle. A group of variant algorithms is proposed based on the ways of sharing intermediate results, with the relative performance t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 1999-09, Vol.11 (5), p.798-805
Hauptverfasser: Han, Jiawei, Fu, Yongjian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 805
container_issue 5
container_start_page 798
container_title IEEE transactions on knowledge and data engineering
container_volume 11
creator Han, Jiawei
Fu, Yongjian
description A top-down progressive deepening method is developed for efficient mining of multiple-level association rules from large transaction databases based on the a priori principle. A group of variant algorithms is proposed based on the ways of sharing intermediate results, with the relative performance tested and analyzed. The enforcement of different interestingness measurements to find more interesting rules, and the relaxation of rule conditions for finding "level-crossing" association rules, are also investigated. The study shows that efficient algorithms can be developed from large databases for the discovery of interesting and strong multiple-level association rules.
doi_str_mv 10.1109/69.806937
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_919912407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>806937</ieee_id><sourcerecordid>28371426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-7f175d10241cc3b7c052af4022b67f10f78c796caa9c42179e32721d7688f6fd3</originalsourceid><addsrcrecordid>eNqF0U1Lw0AQBuBFFKzVg1dPOSkeUmd2N_vhTYpfUPGi57DdTMrKNqnZVPDfG0nxaE8zMA_DMC9j5wgzRLA3ys4MKCv0AZtgUZico8XDoQeJuRRSH7OTlD4AwGiDE3b7EprQrLL1NvZhEymP9EUxcym1Prg-tE3WbSOlLDRZdN2Kssr1bukSpVN2VLuY6GxXp-z94f5t_pQvXh-f53eL3AuNfa5r1EWFwCV6L5baQ8FdLYHzpRpmUGvjtVXeOeslR21JcM2x0sqYWtWVmLKrce-maz-3lPpyHZKnGF1D7TaVFq1FLkEP8vJfya1QghfFfmiG0yVX-6EGGB5sB3g9Qt-1KXVUl5surF33XSKUv8mUypZjMoO9GG0goj-3G_4AqsKGnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27001919</pqid></control><display><type>article</type><title>Mining multiple-level association rules in large databases</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Jiawei ; Fu, Yongjian</creator><creatorcontrib>Han, Jiawei ; Fu, Yongjian</creatorcontrib><description>A top-down progressive deepening method is developed for efficient mining of multiple-level association rules from large transaction databases based on the a priori principle. A group of variant algorithms is proposed based on the ways of sharing intermediate results, with the relative performance tested and analyzed. The enforcement of different interestingness measurements to find more interesting rules, and the relaxation of rule conditions for finding "level-crossing" association rules, are also investigated. The study shows that efficient algorithms can be developed from large databases for the discovery of interesting and strong multiple-level association rules.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/69.806937</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Association rules ; Computer Society ; Concrete ; Dairy products ; Data mining ; Mining ; Performance analysis ; Taxonomy ; Testing ; Transaction databases</subject><ispartof>IEEE transactions on knowledge and data engineering, 1999-09, Vol.11 (5), p.798-805</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-7f175d10241cc3b7c052af4022b67f10f78c796caa9c42179e32721d7688f6fd3</citedby><cites>FETCH-LOGICAL-c371t-7f175d10241cc3b7c052af4022b67f10f78c796caa9c42179e32721d7688f6fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/806937$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/806937$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Han, Jiawei</creatorcontrib><creatorcontrib>Fu, Yongjian</creatorcontrib><title>Mining multiple-level association rules in large databases</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>A top-down progressive deepening method is developed for efficient mining of multiple-level association rules from large transaction databases based on the a priori principle. A group of variant algorithms is proposed based on the ways of sharing intermediate results, with the relative performance tested and analyzed. The enforcement of different interestingness measurements to find more interesting rules, and the relaxation of rule conditions for finding "level-crossing" association rules, are also investigated. The study shows that efficient algorithms can be developed from large databases for the discovery of interesting and strong multiple-level association rules.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Association rules</subject><subject>Computer Society</subject><subject>Concrete</subject><subject>Dairy products</subject><subject>Data mining</subject><subject>Mining</subject><subject>Performance analysis</subject><subject>Taxonomy</subject><subject>Testing</subject><subject>Transaction databases</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0U1Lw0AQBuBFFKzVg1dPOSkeUmd2N_vhTYpfUPGi57DdTMrKNqnZVPDfG0nxaE8zMA_DMC9j5wgzRLA3ys4MKCv0AZtgUZico8XDoQeJuRRSH7OTlD4AwGiDE3b7EprQrLL1NvZhEymP9EUxcym1Prg-tE3WbSOlLDRZdN2Kssr1bukSpVN2VLuY6GxXp-z94f5t_pQvXh-f53eL3AuNfa5r1EWFwCV6L5baQ8FdLYHzpRpmUGvjtVXeOeslR21JcM2x0sqYWtWVmLKrce-maz-3lPpyHZKnGF1D7TaVFq1FLkEP8vJfya1QghfFfmiG0yVX-6EGGB5sB3g9Qt-1KXVUl5surF33XSKUv8mUypZjMoO9GG0goj-3G_4AqsKGnQ</recordid><startdate>19990901</startdate><enddate>19990901</enddate><creator>Han, Jiawei</creator><creator>Fu, Yongjian</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>19990901</creationdate><title>Mining multiple-level association rules in large databases</title><author>Han, Jiawei ; Fu, Yongjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-7f175d10241cc3b7c052af4022b67f10f78c796caa9c42179e32721d7688f6fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Association rules</topic><topic>Computer Society</topic><topic>Concrete</topic><topic>Dairy products</topic><topic>Data mining</topic><topic>Mining</topic><topic>Performance analysis</topic><topic>Taxonomy</topic><topic>Testing</topic><topic>Transaction databases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Jiawei</creatorcontrib><creatorcontrib>Fu, Yongjian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Jiawei</au><au>Fu, Yongjian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mining multiple-level association rules in large databases</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>1999-09-01</date><risdate>1999</risdate><volume>11</volume><issue>5</issue><spage>798</spage><epage>805</epage><pages>798-805</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>A top-down progressive deepening method is developed for efficient mining of multiple-level association rules from large transaction databases based on the a priori principle. A group of variant algorithms is proposed based on the ways of sharing intermediate results, with the relative performance tested and analyzed. The enforcement of different interestingness measurements to find more interesting rules, and the relaxation of rule conditions for finding "level-crossing" association rules, are also investigated. The study shows that efficient algorithms can be developed from large databases for the discovery of interesting and strong multiple-level association rules.</abstract><pub>IEEE</pub><doi>10.1109/69.806937</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 1999-09, Vol.11 (5), p.798-805
issn 1041-4347
1558-2191
language eng
recordid cdi_proquest_miscellaneous_919912407
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Association rules
Computer Society
Concrete
Dairy products
Data mining
Mining
Performance analysis
Taxonomy
Testing
Transaction databases
title Mining multiple-level association rules in large databases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mining%20multiple-level%20association%20rules%20in%20large%20databases&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Han,%20Jiawei&rft.date=1999-09-01&rft.volume=11&rft.issue=5&rft.spage=798&rft.epage=805&rft.pages=798-805&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/69.806937&rft_dat=%3Cproquest_RIE%3E28371426%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27001919&rft_id=info:pmid/&rft_ieee_id=806937&rfr_iscdi=true