The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs

The potential impact of high- Kappa gate dielectrics on device short-channel performance is studied over a wide range of dielectric permittivities using a two-dimensional (2-D) simulator implemented with quantum mechanical models. It is found that the short-channel performance degradation is caused...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 1999-07, Vol.46 (7), p.1537-1544
Hauptverfasser: Cheng, B., Cao, M., Rao, R., Inani, A., Vande Voorde, P., Greene, W.M., Stork, J.M.C., Zhiping Yu, Zeitzoff, P.M., Woo, J.C.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1544
container_issue 7
container_start_page 1537
container_title IEEE transactions on electron devices
container_volume 46
creator Cheng, B.
Cao, M.
Rao, R.
Inani, A.
Vande Voorde, P.
Greene, W.M.
Stork, J.M.C.
Zhiping Yu
Zeitzoff, P.M.
Woo, J.C.S.
description The potential impact of high- Kappa gate dielectrics on device short-channel performance is studied over a wide range of dielectric permittivities using a two-dimensional (2-D) simulator implemented with quantum mechanical models. It is found that the short-channel performance degradation is caused by the fringing fields from the gate to the source/drain regions. These fringing fields in the source/drain regions further induce electric fields from the source/drain to channel which weakens the gate control. The gate dielectric thickness-to-length aspect ratio is a proper parameter to quantify the percentage of the fringing field and thus the short channel performance degradation. In addition, the gate stack architecture plays an important role in the determination of the device short-channel performance degradation. Using double-layer gate stack structures and low- Kappa dielectric as spacer materials can well confine the electric fields within the channel thereby minimizing short-channel performance degradation. The introduction of a metal gate not only eliminates the poly gate depletion effect, but also improves short-channel performance. Several approaches have been proposed to adjust the proper threshold voltage when midgap materials or metal gates are used.
doi_str_mv 10.1109/16.772508
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919909369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27006517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-c44c22101ad8e1bd3bb2e639f90bece6eba4c9dd656c7b450828e222af14d6e93</originalsourceid><addsrcrecordid>eNqFkb1OwzAUhT2ARCkMvIEnEEOKr-049ogq_qSiDhRWy7FvmqD8lDgdeDUegmciVZhhujr3fDrS0SHkAtgCgJkbUIss4ynTR2TGGOjECC1OyGmM76NUUvIZeduUSKtm5_xAu4KW1bZMvr_o1g1IQ4U1-qGvfKSuDbTBwdWTNRldwEi7lsZ9ngBjtG3o8_rl_m4Tz8hx4eqI5793Tl7H9_IxWa0fnpa3q8QLDkPipfScAwMXNEIeRJ5zVMIUhuXoUWHupDchqFT5LJdjFa6Rc-4KkEGhEXNyNeXu-u5jj3GwTRU91rVrsdtHa8AYZoQ6kJd_klwrpU3K_wczxlQK2QheT6Dvuxh7LOyurxrXf1pg9jCABWWnAcQPtuN4ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27006517</pqid></control><display><type>article</type><title>The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs</title><source>IEEE Electronic Library (IEL)</source><creator>Cheng, B. ; Cao, M. ; Rao, R. ; Inani, A. ; Vande Voorde, P. ; Greene, W.M. ; Stork, J.M.C. ; Zhiping Yu ; Zeitzoff, P.M. ; Woo, J.C.S.</creator><creatorcontrib>Cheng, B. ; Cao, M. ; Rao, R. ; Inani, A. ; Vande Voorde, P. ; Greene, W.M. ; Stork, J.M.C. ; Zhiping Yu ; Zeitzoff, P.M. ; Woo, J.C.S.</creatorcontrib><description>The potential impact of high- Kappa gate dielectrics on device short-channel performance is studied over a wide range of dielectric permittivities using a two-dimensional (2-D) simulator implemented with quantum mechanical models. It is found that the short-channel performance degradation is caused by the fringing fields from the gate to the source/drain regions. These fringing fields in the source/drain regions further induce electric fields from the source/drain to channel which weakens the gate control. The gate dielectric thickness-to-length aspect ratio is a proper parameter to quantify the percentage of the fringing field and thus the short channel performance degradation. In addition, the gate stack architecture plays an important role in the determination of the device short-channel performance degradation. Using double-layer gate stack structures and low- Kappa dielectric as spacer materials can well confine the electric fields within the channel thereby minimizing short-channel performance degradation. The introduction of a metal gate not only eliminates the poly gate depletion effect, but also improves short-channel performance. Several approaches have been proposed to adjust the proper threshold voltage when midgap materials or metal gates are used.</description><identifier>ISSN: 0018-9383</identifier><identifier>DOI: 10.1109/16.772508</identifier><language>eng</language><subject>Channels ; Devices ; Dielectrics ; Drains ; Electric fields ; Gates ; Performance degradation ; Stacks</subject><ispartof>IEEE transactions on electron devices, 1999-07, Vol.46 (7), p.1537-1544</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-c44c22101ad8e1bd3bb2e639f90bece6eba4c9dd656c7b450828e222af14d6e93</citedby><cites>FETCH-LOGICAL-c321t-c44c22101ad8e1bd3bb2e639f90bece6eba4c9dd656c7b450828e222af14d6e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cheng, B.</creatorcontrib><creatorcontrib>Cao, M.</creatorcontrib><creatorcontrib>Rao, R.</creatorcontrib><creatorcontrib>Inani, A.</creatorcontrib><creatorcontrib>Vande Voorde, P.</creatorcontrib><creatorcontrib>Greene, W.M.</creatorcontrib><creatorcontrib>Stork, J.M.C.</creatorcontrib><creatorcontrib>Zhiping Yu</creatorcontrib><creatorcontrib>Zeitzoff, P.M.</creatorcontrib><creatorcontrib>Woo, J.C.S.</creatorcontrib><title>The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs</title><title>IEEE transactions on electron devices</title><description>The potential impact of high- Kappa gate dielectrics on device short-channel performance is studied over a wide range of dielectric permittivities using a two-dimensional (2-D) simulator implemented with quantum mechanical models. It is found that the short-channel performance degradation is caused by the fringing fields from the gate to the source/drain regions. These fringing fields in the source/drain regions further induce electric fields from the source/drain to channel which weakens the gate control. The gate dielectric thickness-to-length aspect ratio is a proper parameter to quantify the percentage of the fringing field and thus the short channel performance degradation. In addition, the gate stack architecture plays an important role in the determination of the device short-channel performance degradation. Using double-layer gate stack structures and low- Kappa dielectric as spacer materials can well confine the electric fields within the channel thereby minimizing short-channel performance degradation. The introduction of a metal gate not only eliminates the poly gate depletion effect, but also improves short-channel performance. Several approaches have been proposed to adjust the proper threshold voltage when midgap materials or metal gates are used.</description><subject>Channels</subject><subject>Devices</subject><subject>Dielectrics</subject><subject>Drains</subject><subject>Electric fields</subject><subject>Gates</subject><subject>Performance degradation</subject><subject>Stacks</subject><issn>0018-9383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkb1OwzAUhT2ARCkMvIEnEEOKr-049ogq_qSiDhRWy7FvmqD8lDgdeDUegmciVZhhujr3fDrS0SHkAtgCgJkbUIss4ynTR2TGGOjECC1OyGmM76NUUvIZeduUSKtm5_xAu4KW1bZMvr_o1g1IQ4U1-qGvfKSuDbTBwdWTNRldwEi7lsZ9ngBjtG3o8_rl_m4Tz8hx4eqI5793Tl7H9_IxWa0fnpa3q8QLDkPipfScAwMXNEIeRJ5zVMIUhuXoUWHupDchqFT5LJdjFa6Rc-4KkEGhEXNyNeXu-u5jj3GwTRU91rVrsdtHa8AYZoQ6kJd_klwrpU3K_wczxlQK2QheT6Dvuxh7LOyurxrXf1pg9jCABWWnAcQPtuN4ww</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Cheng, B.</creator><creator>Cao, M.</creator><creator>Rao, R.</creator><creator>Inani, A.</creator><creator>Vande Voorde, P.</creator><creator>Greene, W.M.</creator><creator>Stork, J.M.C.</creator><creator>Zhiping Yu</creator><creator>Zeitzoff, P.M.</creator><creator>Woo, J.C.S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19990701</creationdate><title>The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs</title><author>Cheng, B. ; Cao, M. ; Rao, R. ; Inani, A. ; Vande Voorde, P. ; Greene, W.M. ; Stork, J.M.C. ; Zhiping Yu ; Zeitzoff, P.M. ; Woo, J.C.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-c44c22101ad8e1bd3bb2e639f90bece6eba4c9dd656c7b450828e222af14d6e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Channels</topic><topic>Devices</topic><topic>Dielectrics</topic><topic>Drains</topic><topic>Electric fields</topic><topic>Gates</topic><topic>Performance degradation</topic><topic>Stacks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, B.</creatorcontrib><creatorcontrib>Cao, M.</creatorcontrib><creatorcontrib>Rao, R.</creatorcontrib><creatorcontrib>Inani, A.</creatorcontrib><creatorcontrib>Vande Voorde, P.</creatorcontrib><creatorcontrib>Greene, W.M.</creatorcontrib><creatorcontrib>Stork, J.M.C.</creatorcontrib><creatorcontrib>Zhiping Yu</creatorcontrib><creatorcontrib>Zeitzoff, P.M.</creatorcontrib><creatorcontrib>Woo, J.C.S.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, B.</au><au>Cao, M.</au><au>Rao, R.</au><au>Inani, A.</au><au>Vande Voorde, P.</au><au>Greene, W.M.</au><au>Stork, J.M.C.</au><au>Zhiping Yu</au><au>Zeitzoff, P.M.</au><au>Woo, J.C.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs</atitle><jtitle>IEEE transactions on electron devices</jtitle><date>1999-07-01</date><risdate>1999</risdate><volume>46</volume><issue>7</issue><spage>1537</spage><epage>1544</epage><pages>1537-1544</pages><issn>0018-9383</issn><abstract>The potential impact of high- Kappa gate dielectrics on device short-channel performance is studied over a wide range of dielectric permittivities using a two-dimensional (2-D) simulator implemented with quantum mechanical models. It is found that the short-channel performance degradation is caused by the fringing fields from the gate to the source/drain regions. These fringing fields in the source/drain regions further induce electric fields from the source/drain to channel which weakens the gate control. The gate dielectric thickness-to-length aspect ratio is a proper parameter to quantify the percentage of the fringing field and thus the short channel performance degradation. In addition, the gate stack architecture plays an important role in the determination of the device short-channel performance degradation. Using double-layer gate stack structures and low- Kappa dielectric as spacer materials can well confine the electric fields within the channel thereby minimizing short-channel performance degradation. The introduction of a metal gate not only eliminates the poly gate depletion effect, but also improves short-channel performance. Several approaches have been proposed to adjust the proper threshold voltage when midgap materials or metal gates are used.</abstract><doi>10.1109/16.772508</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 1999-07, Vol.46 (7), p.1537-1544
issn 0018-9383
language eng
recordid cdi_proquest_miscellaneous_919909369
source IEEE Electronic Library (IEL)
subjects Channels
Devices
Dielectrics
Drains
Electric fields
Gates
Performance degradation
Stacks
title The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20high-%CE%BA%20gate%20dielectrics%20and%20metal%20gate%20electrodes%20on%20sub-100%20nm%20MOSFETs&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Cheng,%20B.&rft.date=1999-07-01&rft.volume=46&rft.issue=7&rft.spage=1537&rft.epage=1544&rft.pages=1537-1544&rft.issn=0018-9383&rft_id=info:doi/10.1109/16.772508&rft_dat=%3Cproquest_cross%3E27006517%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27006517&rft_id=info:pmid/&rfr_iscdi=true