The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs
The potential impact of high- Kappa gate dielectrics on device short-channel performance is studied over a wide range of dielectric permittivities using a two-dimensional (2-D) simulator implemented with quantum mechanical models. It is found that the short-channel performance degradation is caused...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 1999-07, Vol.46 (7), p.1537-1544 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1544 |
---|---|
container_issue | 7 |
container_start_page | 1537 |
container_title | IEEE transactions on electron devices |
container_volume | 46 |
creator | Cheng, B. Cao, M. Rao, R. Inani, A. Vande Voorde, P. Greene, W.M. Stork, J.M.C. Zhiping Yu Zeitzoff, P.M. Woo, J.C.S. |
description | The potential impact of high- Kappa gate dielectrics on device short-channel performance is studied over a wide range of dielectric permittivities using a two-dimensional (2-D) simulator implemented with quantum mechanical models. It is found that the short-channel performance degradation is caused by the fringing fields from the gate to the source/drain regions. These fringing fields in the source/drain regions further induce electric fields from the source/drain to channel which weakens the gate control. The gate dielectric thickness-to-length aspect ratio is a proper parameter to quantify the percentage of the fringing field and thus the short channel performance degradation. In addition, the gate stack architecture plays an important role in the determination of the device short-channel performance degradation. Using double-layer gate stack structures and low- Kappa dielectric as spacer materials can well confine the electric fields within the channel thereby minimizing short-channel performance degradation. The introduction of a metal gate not only eliminates the poly gate depletion effect, but also improves short-channel performance. Several approaches have been proposed to adjust the proper threshold voltage when midgap materials or metal gates are used. |
doi_str_mv | 10.1109/16.772508 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919909369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27006517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-c44c22101ad8e1bd3bb2e639f90bece6eba4c9dd656c7b450828e222af14d6e93</originalsourceid><addsrcrecordid>eNqFkb1OwzAUhT2ARCkMvIEnEEOKr-049ogq_qSiDhRWy7FvmqD8lDgdeDUegmciVZhhujr3fDrS0SHkAtgCgJkbUIss4ynTR2TGGOjECC1OyGmM76NUUvIZeduUSKtm5_xAu4KW1bZMvr_o1g1IQ4U1-qGvfKSuDbTBwdWTNRldwEi7lsZ9ngBjtG3o8_rl_m4Tz8hx4eqI5793Tl7H9_IxWa0fnpa3q8QLDkPipfScAwMXNEIeRJ5zVMIUhuXoUWHupDchqFT5LJdjFa6Rc-4KkEGhEXNyNeXu-u5jj3GwTRU91rVrsdtHa8AYZoQ6kJd_klwrpU3K_wczxlQK2QheT6Dvuxh7LOyurxrXf1pg9jCABWWnAcQPtuN4ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27006517</pqid></control><display><type>article</type><title>The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs</title><source>IEEE Electronic Library (IEL)</source><creator>Cheng, B. ; Cao, M. ; Rao, R. ; Inani, A. ; Vande Voorde, P. ; Greene, W.M. ; Stork, J.M.C. ; Zhiping Yu ; Zeitzoff, P.M. ; Woo, J.C.S.</creator><creatorcontrib>Cheng, B. ; Cao, M. ; Rao, R. ; Inani, A. ; Vande Voorde, P. ; Greene, W.M. ; Stork, J.M.C. ; Zhiping Yu ; Zeitzoff, P.M. ; Woo, J.C.S.</creatorcontrib><description>The potential impact of high- Kappa gate dielectrics on device short-channel performance is studied over a wide range of dielectric permittivities using a two-dimensional (2-D) simulator implemented with quantum mechanical models. It is found that the short-channel performance degradation is caused by the fringing fields from the gate to the source/drain regions. These fringing fields in the source/drain regions further induce electric fields from the source/drain to channel which weakens the gate control. The gate dielectric thickness-to-length aspect ratio is a proper parameter to quantify the percentage of the fringing field and thus the short channel performance degradation. In addition, the gate stack architecture plays an important role in the determination of the device short-channel performance degradation. Using double-layer gate stack structures and low- Kappa dielectric as spacer materials can well confine the electric fields within the channel thereby minimizing short-channel performance degradation. The introduction of a metal gate not only eliminates the poly gate depletion effect, but also improves short-channel performance. Several approaches have been proposed to adjust the proper threshold voltage when midgap materials or metal gates are used.</description><identifier>ISSN: 0018-9383</identifier><identifier>DOI: 10.1109/16.772508</identifier><language>eng</language><subject>Channels ; Devices ; Dielectrics ; Drains ; Electric fields ; Gates ; Performance degradation ; Stacks</subject><ispartof>IEEE transactions on electron devices, 1999-07, Vol.46 (7), p.1537-1544</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-c44c22101ad8e1bd3bb2e639f90bece6eba4c9dd656c7b450828e222af14d6e93</citedby><cites>FETCH-LOGICAL-c321t-c44c22101ad8e1bd3bb2e639f90bece6eba4c9dd656c7b450828e222af14d6e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cheng, B.</creatorcontrib><creatorcontrib>Cao, M.</creatorcontrib><creatorcontrib>Rao, R.</creatorcontrib><creatorcontrib>Inani, A.</creatorcontrib><creatorcontrib>Vande Voorde, P.</creatorcontrib><creatorcontrib>Greene, W.M.</creatorcontrib><creatorcontrib>Stork, J.M.C.</creatorcontrib><creatorcontrib>Zhiping Yu</creatorcontrib><creatorcontrib>Zeitzoff, P.M.</creatorcontrib><creatorcontrib>Woo, J.C.S.</creatorcontrib><title>The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs</title><title>IEEE transactions on electron devices</title><description>The potential impact of high- Kappa gate dielectrics on device short-channel performance is studied over a wide range of dielectric permittivities using a two-dimensional (2-D) simulator implemented with quantum mechanical models. It is found that the short-channel performance degradation is caused by the fringing fields from the gate to the source/drain regions. These fringing fields in the source/drain regions further induce electric fields from the source/drain to channel which weakens the gate control. The gate dielectric thickness-to-length aspect ratio is a proper parameter to quantify the percentage of the fringing field and thus the short channel performance degradation. In addition, the gate stack architecture plays an important role in the determination of the device short-channel performance degradation. Using double-layer gate stack structures and low- Kappa dielectric as spacer materials can well confine the electric fields within the channel thereby minimizing short-channel performance degradation. The introduction of a metal gate not only eliminates the poly gate depletion effect, but also improves short-channel performance. Several approaches have been proposed to adjust the proper threshold voltage when midgap materials or metal gates are used.</description><subject>Channels</subject><subject>Devices</subject><subject>Dielectrics</subject><subject>Drains</subject><subject>Electric fields</subject><subject>Gates</subject><subject>Performance degradation</subject><subject>Stacks</subject><issn>0018-9383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkb1OwzAUhT2ARCkMvIEnEEOKr-049ogq_qSiDhRWy7FvmqD8lDgdeDUegmciVZhhujr3fDrS0SHkAtgCgJkbUIss4ynTR2TGGOjECC1OyGmM76NUUvIZeduUSKtm5_xAu4KW1bZMvr_o1g1IQ4U1-qGvfKSuDbTBwdWTNRldwEi7lsZ9ngBjtG3o8_rl_m4Tz8hx4eqI5793Tl7H9_IxWa0fnpa3q8QLDkPipfScAwMXNEIeRJ5zVMIUhuXoUWHupDchqFT5LJdjFa6Rc-4KkEGhEXNyNeXu-u5jj3GwTRU91rVrsdtHa8AYZoQ6kJd_klwrpU3K_wczxlQK2QheT6Dvuxh7LOyurxrXf1pg9jCABWWnAcQPtuN4ww</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Cheng, B.</creator><creator>Cao, M.</creator><creator>Rao, R.</creator><creator>Inani, A.</creator><creator>Vande Voorde, P.</creator><creator>Greene, W.M.</creator><creator>Stork, J.M.C.</creator><creator>Zhiping Yu</creator><creator>Zeitzoff, P.M.</creator><creator>Woo, J.C.S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19990701</creationdate><title>The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs</title><author>Cheng, B. ; Cao, M. ; Rao, R. ; Inani, A. ; Vande Voorde, P. ; Greene, W.M. ; Stork, J.M.C. ; Zhiping Yu ; Zeitzoff, P.M. ; Woo, J.C.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-c44c22101ad8e1bd3bb2e639f90bece6eba4c9dd656c7b450828e222af14d6e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Channels</topic><topic>Devices</topic><topic>Dielectrics</topic><topic>Drains</topic><topic>Electric fields</topic><topic>Gates</topic><topic>Performance degradation</topic><topic>Stacks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, B.</creatorcontrib><creatorcontrib>Cao, M.</creatorcontrib><creatorcontrib>Rao, R.</creatorcontrib><creatorcontrib>Inani, A.</creatorcontrib><creatorcontrib>Vande Voorde, P.</creatorcontrib><creatorcontrib>Greene, W.M.</creatorcontrib><creatorcontrib>Stork, J.M.C.</creatorcontrib><creatorcontrib>Zhiping Yu</creatorcontrib><creatorcontrib>Zeitzoff, P.M.</creatorcontrib><creatorcontrib>Woo, J.C.S.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, B.</au><au>Cao, M.</au><au>Rao, R.</au><au>Inani, A.</au><au>Vande Voorde, P.</au><au>Greene, W.M.</au><au>Stork, J.M.C.</au><au>Zhiping Yu</au><au>Zeitzoff, P.M.</au><au>Woo, J.C.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs</atitle><jtitle>IEEE transactions on electron devices</jtitle><date>1999-07-01</date><risdate>1999</risdate><volume>46</volume><issue>7</issue><spage>1537</spage><epage>1544</epage><pages>1537-1544</pages><issn>0018-9383</issn><abstract>The potential impact of high- Kappa gate dielectrics on device short-channel performance is studied over a wide range of dielectric permittivities using a two-dimensional (2-D) simulator implemented with quantum mechanical models. It is found that the short-channel performance degradation is caused by the fringing fields from the gate to the source/drain regions. These fringing fields in the source/drain regions further induce electric fields from the source/drain to channel which weakens the gate control. The gate dielectric thickness-to-length aspect ratio is a proper parameter to quantify the percentage of the fringing field and thus the short channel performance degradation. In addition, the gate stack architecture plays an important role in the determination of the device short-channel performance degradation. Using double-layer gate stack structures and low- Kappa dielectric as spacer materials can well confine the electric fields within the channel thereby minimizing short-channel performance degradation. The introduction of a metal gate not only eliminates the poly gate depletion effect, but also improves short-channel performance. Several approaches have been proposed to adjust the proper threshold voltage when midgap materials or metal gates are used.</abstract><doi>10.1109/16.772508</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 1999-07, Vol.46 (7), p.1537-1544 |
issn | 0018-9383 |
language | eng |
recordid | cdi_proquest_miscellaneous_919909369 |
source | IEEE Electronic Library (IEL) |
subjects | Channels Devices Dielectrics Drains Electric fields Gates Performance degradation Stacks |
title | The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20high-%CE%BA%20gate%20dielectrics%20and%20metal%20gate%20electrodes%20on%20sub-100%20nm%20MOSFETs&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Cheng,%20B.&rft.date=1999-07-01&rft.volume=46&rft.issue=7&rft.spage=1537&rft.epage=1544&rft.pages=1537-1544&rft.issn=0018-9383&rft_id=info:doi/10.1109/16.772508&rft_dat=%3Cproquest_cross%3E27006517%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27006517&rft_id=info:pmid/&rfr_iscdi=true |