Nanoindentation measurements on modified diamond-like carbon thin films
• Stress reduction in DLC due to introduction of nitrogen, copper and titanium. • Improvement in hardness, elastic modulus and various other mechanical parameters due introduction of metallic (Cu and Ti) interfacial layers. • Increase in indentation load leads to degradation in mechanical properties...
Gespeichert in:
Veröffentlicht in: | Applied surface science 2011-09, Vol.257 (23), p.9953-9959 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9959 |
---|---|
container_issue | 23 |
container_start_page | 9953 |
container_title | Applied surface science |
container_volume | 257 |
creator | Dwivedi, Neeraj Kumar, Sushil Malik, Hitendra K. |
description | • Stress reduction in DLC due to introduction of nitrogen, copper and titanium. • Improvement in hardness, elastic modulus and various other mechanical parameters due introduction of metallic (Cu and Ti) interfacial layers. • Increase in indentation load leads to degradation in mechanical properties.
In the present study, we explored the effect of metallic interlayers (Cu and Ti) and indentation loads (5–20mN) on the mechanical properties of plasma produced diamond-like carbon (DLC) thin films. Also a comparison has been made for mechanical properties of these films with pure DLC and nitrogen incorporated DLC films. Introduction of N in DLC led to a drastic decrease in residual stress (S) from 1.8 to 0.7GPa, but with expenses of hardness (H) and other mechanical properties. In contrast, addition of Cu and Ti interlayers between substrate Si and DLC, results in significant decrease in S with little enhancement of hardness and other mechanical properties. Among various DLC films, maximum hardness 30.8GPa is observed in Ti-DLC film. Besides hardness and elastic modulus, various other mechanical parameters have also been estimated using load versus displacement curves. |
doi_str_mv | 10.1016/j.apsusc.2011.06.114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919907936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433211009901</els_id><sourcerecordid>919907936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-c3110ada7b9ca4fd1d37f6351bbf24a1fcf1496cb5f152fdf8d10abf947ab0b03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78Aw-9iKfWTJO2m4sgi67Cohc9h2k-MGubrkkr-O_N0sWjp2HmfWZe5iXkCmgBFOrbbYG7OEVVlBSgoHUBwI_IApYNy6tqyY_JImEi54yVp-Qsxi2lUCZ1QdYv6AfntfEjjm7wWW8wTsH0aRCzfT9oZ53RmXbYD17nnfs0mcLQJnH8cD6zruvjBTmx2EVzeajn5P3x4W31lG9e18-r-02uOONjrhgARY1NKxRyq0Gzxtasgra1JUewygIXtWorC1VptV3qxLdW8AZb2lJ2Tm7mu7swfE0mjrJ3UZmuQ2-GKUoBQtBGsDqRfCZVGGIMxspdcD2GHwlU7mOTWznHJvexSVrLFFtauz4YYFTY2YBeufi3W3IuSiYgcXczZ9K3384EGZUzXhntglGj1IP73-gXEdCGxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919907936</pqid></control><display><type>article</type><title>Nanoindentation measurements on modified diamond-like carbon thin films</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Dwivedi, Neeraj ; Kumar, Sushil ; Malik, Hitendra K.</creator><creatorcontrib>Dwivedi, Neeraj ; Kumar, Sushil ; Malik, Hitendra K.</creatorcontrib><description>• Stress reduction in DLC due to introduction of nitrogen, copper and titanium. • Improvement in hardness, elastic modulus and various other mechanical parameters due introduction of metallic (Cu and Ti) interfacial layers. • Increase in indentation load leads to degradation in mechanical properties.
In the present study, we explored the effect of metallic interlayers (Cu and Ti) and indentation loads (5–20mN) on the mechanical properties of plasma produced diamond-like carbon (DLC) thin films. Also a comparison has been made for mechanical properties of these films with pure DLC and nitrogen incorporated DLC films. Introduction of N in DLC led to a drastic decrease in residual stress (S) from 1.8 to 0.7GPa, but with expenses of hardness (H) and other mechanical properties. In contrast, addition of Cu and Ti interlayers between substrate Si and DLC, results in significant decrease in S with little enhancement of hardness and other mechanical properties. Among various DLC films, maximum hardness 30.8GPa is observed in Ti-DLC film. Besides hardness and elastic modulus, various other mechanical parameters have also been estimated using load versus displacement curves.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2011.06.114</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Copper ; Cross-disciplinary physics: materials science; rheology ; Diamond-like carbon (DLC) ; Diamond-like carbon films ; Exact sciences and technology ; Hardness ; Indentation ; Interlayers ; Mechanical properties ; PECVD ; Physics ; Silicon substrates ; Stress ; Thin films ; Titanium</subject><ispartof>Applied surface science, 2011-09, Vol.257 (23), p.9953-9959</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-c3110ada7b9ca4fd1d37f6351bbf24a1fcf1496cb5f152fdf8d10abf947ab0b03</citedby><cites>FETCH-LOGICAL-c434t-c3110ada7b9ca4fd1d37f6351bbf24a1fcf1496cb5f152fdf8d10abf947ab0b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169433211009901$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24492391$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dwivedi, Neeraj</creatorcontrib><creatorcontrib>Kumar, Sushil</creatorcontrib><creatorcontrib>Malik, Hitendra K.</creatorcontrib><title>Nanoindentation measurements on modified diamond-like carbon thin films</title><title>Applied surface science</title><description>• Stress reduction in DLC due to introduction of nitrogen, copper and titanium. • Improvement in hardness, elastic modulus and various other mechanical parameters due introduction of metallic (Cu and Ti) interfacial layers. • Increase in indentation load leads to degradation in mechanical properties.
In the present study, we explored the effect of metallic interlayers (Cu and Ti) and indentation loads (5–20mN) on the mechanical properties of plasma produced diamond-like carbon (DLC) thin films. Also a comparison has been made for mechanical properties of these films with pure DLC and nitrogen incorporated DLC films. Introduction of N in DLC led to a drastic decrease in residual stress (S) from 1.8 to 0.7GPa, but with expenses of hardness (H) and other mechanical properties. In contrast, addition of Cu and Ti interlayers between substrate Si and DLC, results in significant decrease in S with little enhancement of hardness and other mechanical properties. Among various DLC films, maximum hardness 30.8GPa is observed in Ti-DLC film. Besides hardness and elastic modulus, various other mechanical parameters have also been estimated using load versus displacement curves.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Copper</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Diamond-like carbon (DLC)</subject><subject>Diamond-like carbon films</subject><subject>Exact sciences and technology</subject><subject>Hardness</subject><subject>Indentation</subject><subject>Interlayers</subject><subject>Mechanical properties</subject><subject>PECVD</subject><subject>Physics</subject><subject>Silicon substrates</subject><subject>Stress</subject><subject>Thin films</subject><subject>Titanium</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78Aw-9iKfWTJO2m4sgi67Cohc9h2k-MGubrkkr-O_N0sWjp2HmfWZe5iXkCmgBFOrbbYG7OEVVlBSgoHUBwI_IApYNy6tqyY_JImEi54yVp-Qsxi2lUCZ1QdYv6AfntfEjjm7wWW8wTsH0aRCzfT9oZ53RmXbYD17nnfs0mcLQJnH8cD6zruvjBTmx2EVzeajn5P3x4W31lG9e18-r-02uOONjrhgARY1NKxRyq0Gzxtasgra1JUewygIXtWorC1VptV3qxLdW8AZb2lJ2Tm7mu7swfE0mjrJ3UZmuQ2-GKUoBQtBGsDqRfCZVGGIMxspdcD2GHwlU7mOTWznHJvexSVrLFFtauz4YYFTY2YBeufi3W3IuSiYgcXczZ9K3384EGZUzXhntglGj1IP73-gXEdCGxw</recordid><startdate>20110915</startdate><enddate>20110915</enddate><creator>Dwivedi, Neeraj</creator><creator>Kumar, Sushil</creator><creator>Malik, Hitendra K.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110915</creationdate><title>Nanoindentation measurements on modified diamond-like carbon thin films</title><author>Dwivedi, Neeraj ; Kumar, Sushil ; Malik, Hitendra K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-c3110ada7b9ca4fd1d37f6351bbf24a1fcf1496cb5f152fdf8d10abf947ab0b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Copper</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Diamond-like carbon (DLC)</topic><topic>Diamond-like carbon films</topic><topic>Exact sciences and technology</topic><topic>Hardness</topic><topic>Indentation</topic><topic>Interlayers</topic><topic>Mechanical properties</topic><topic>PECVD</topic><topic>Physics</topic><topic>Silicon substrates</topic><topic>Stress</topic><topic>Thin films</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dwivedi, Neeraj</creatorcontrib><creatorcontrib>Kumar, Sushil</creatorcontrib><creatorcontrib>Malik, Hitendra K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dwivedi, Neeraj</au><au>Kumar, Sushil</au><au>Malik, Hitendra K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoindentation measurements on modified diamond-like carbon thin films</atitle><jtitle>Applied surface science</jtitle><date>2011-09-15</date><risdate>2011</risdate><volume>257</volume><issue>23</issue><spage>9953</spage><epage>9959</epage><pages>9953-9959</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>• Stress reduction in DLC due to introduction of nitrogen, copper and titanium. • Improvement in hardness, elastic modulus and various other mechanical parameters due introduction of metallic (Cu and Ti) interfacial layers. • Increase in indentation load leads to degradation in mechanical properties.
In the present study, we explored the effect of metallic interlayers (Cu and Ti) and indentation loads (5–20mN) on the mechanical properties of plasma produced diamond-like carbon (DLC) thin films. Also a comparison has been made for mechanical properties of these films with pure DLC and nitrogen incorporated DLC films. Introduction of N in DLC led to a drastic decrease in residual stress (S) from 1.8 to 0.7GPa, but with expenses of hardness (H) and other mechanical properties. In contrast, addition of Cu and Ti interlayers between substrate Si and DLC, results in significant decrease in S with little enhancement of hardness and other mechanical properties. Among various DLC films, maximum hardness 30.8GPa is observed in Ti-DLC film. Besides hardness and elastic modulus, various other mechanical parameters have also been estimated using load versus displacement curves.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2011.06.114</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-4332 |
ispartof | Applied surface science, 2011-09, Vol.257 (23), p.9953-9959 |
issn | 0169-4332 1873-5584 |
language | eng |
recordid | cdi_proquest_miscellaneous_919907936 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Copper Cross-disciplinary physics: materials science rheology Diamond-like carbon (DLC) Diamond-like carbon films Exact sciences and technology Hardness Indentation Interlayers Mechanical properties PECVD Physics Silicon substrates Stress Thin films Titanium |
title | Nanoindentation measurements on modified diamond-like carbon thin films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoindentation%20measurements%20on%20modified%20diamond-like%20carbon%20thin%20films&rft.jtitle=Applied%20surface%20science&rft.au=Dwivedi,%20Neeraj&rft.date=2011-09-15&rft.volume=257&rft.issue=23&rft.spage=9953&rft.epage=9959&rft.pages=9953-9959&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2011.06.114&rft_dat=%3Cproquest_cross%3E919907936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919907936&rft_id=info:pmid/&rft_els_id=S0169433211009901&rfr_iscdi=true |