Nanoindentation measurements on modified diamond-like carbon thin films

• Stress reduction in DLC due to introduction of nitrogen, copper and titanium. • Improvement in hardness, elastic modulus and various other mechanical parameters due introduction of metallic (Cu and Ti) interfacial layers. • Increase in indentation load leads to degradation in mechanical properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2011-09, Vol.257 (23), p.9953-9959
Hauptverfasser: Dwivedi, Neeraj, Kumar, Sushil, Malik, Hitendra K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9959
container_issue 23
container_start_page 9953
container_title Applied surface science
container_volume 257
creator Dwivedi, Neeraj
Kumar, Sushil
Malik, Hitendra K.
description • Stress reduction in DLC due to introduction of nitrogen, copper and titanium. • Improvement in hardness, elastic modulus and various other mechanical parameters due introduction of metallic (Cu and Ti) interfacial layers. • Increase in indentation load leads to degradation in mechanical properties. In the present study, we explored the effect of metallic interlayers (Cu and Ti) and indentation loads (5–20mN) on the mechanical properties of plasma produced diamond-like carbon (DLC) thin films. Also a comparison has been made for mechanical properties of these films with pure DLC and nitrogen incorporated DLC films. Introduction of N in DLC led to a drastic decrease in residual stress (S) from 1.8 to 0.7GPa, but with expenses of hardness (H) and other mechanical properties. In contrast, addition of Cu and Ti interlayers between substrate Si and DLC, results in significant decrease in S with little enhancement of hardness and other mechanical properties. Among various DLC films, maximum hardness 30.8GPa is observed in Ti-DLC film. Besides hardness and elastic modulus, various other mechanical parameters have also been estimated using load versus displacement curves.
doi_str_mv 10.1016/j.apsusc.2011.06.114
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919907936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433211009901</els_id><sourcerecordid>919907936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-c3110ada7b9ca4fd1d37f6351bbf24a1fcf1496cb5f152fdf8d10abf947ab0b03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78Aw-9iKfWTJO2m4sgi67Cohc9h2k-MGubrkkr-O_N0sWjp2HmfWZe5iXkCmgBFOrbbYG7OEVVlBSgoHUBwI_IApYNy6tqyY_JImEi54yVp-Qsxi2lUCZ1QdYv6AfntfEjjm7wWW8wTsH0aRCzfT9oZ53RmXbYD17nnfs0mcLQJnH8cD6zruvjBTmx2EVzeajn5P3x4W31lG9e18-r-02uOONjrhgARY1NKxRyq0Gzxtasgra1JUewygIXtWorC1VptV3qxLdW8AZb2lJ2Tm7mu7swfE0mjrJ3UZmuQ2-GKUoBQtBGsDqRfCZVGGIMxspdcD2GHwlU7mOTWznHJvexSVrLFFtauz4YYFTY2YBeufi3W3IuSiYgcXczZ9K3384EGZUzXhntglGj1IP73-gXEdCGxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919907936</pqid></control><display><type>article</type><title>Nanoindentation measurements on modified diamond-like carbon thin films</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Dwivedi, Neeraj ; Kumar, Sushil ; Malik, Hitendra K.</creator><creatorcontrib>Dwivedi, Neeraj ; Kumar, Sushil ; Malik, Hitendra K.</creatorcontrib><description>• Stress reduction in DLC due to introduction of nitrogen, copper and titanium. • Improvement in hardness, elastic modulus and various other mechanical parameters due introduction of metallic (Cu and Ti) interfacial layers. • Increase in indentation load leads to degradation in mechanical properties. In the present study, we explored the effect of metallic interlayers (Cu and Ti) and indentation loads (5–20mN) on the mechanical properties of plasma produced diamond-like carbon (DLC) thin films. Also a comparison has been made for mechanical properties of these films with pure DLC and nitrogen incorporated DLC films. Introduction of N in DLC led to a drastic decrease in residual stress (S) from 1.8 to 0.7GPa, but with expenses of hardness (H) and other mechanical properties. In contrast, addition of Cu and Ti interlayers between substrate Si and DLC, results in significant decrease in S with little enhancement of hardness and other mechanical properties. Among various DLC films, maximum hardness 30.8GPa is observed in Ti-DLC film. Besides hardness and elastic modulus, various other mechanical parameters have also been estimated using load versus displacement curves.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2011.06.114</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Copper ; Cross-disciplinary physics: materials science; rheology ; Diamond-like carbon (DLC) ; Diamond-like carbon films ; Exact sciences and technology ; Hardness ; Indentation ; Interlayers ; Mechanical properties ; PECVD ; Physics ; Silicon substrates ; Stress ; Thin films ; Titanium</subject><ispartof>Applied surface science, 2011-09, Vol.257 (23), p.9953-9959</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-c3110ada7b9ca4fd1d37f6351bbf24a1fcf1496cb5f152fdf8d10abf947ab0b03</citedby><cites>FETCH-LOGICAL-c434t-c3110ada7b9ca4fd1d37f6351bbf24a1fcf1496cb5f152fdf8d10abf947ab0b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169433211009901$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24492391$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dwivedi, Neeraj</creatorcontrib><creatorcontrib>Kumar, Sushil</creatorcontrib><creatorcontrib>Malik, Hitendra K.</creatorcontrib><title>Nanoindentation measurements on modified diamond-like carbon thin films</title><title>Applied surface science</title><description>• Stress reduction in DLC due to introduction of nitrogen, copper and titanium. • Improvement in hardness, elastic modulus and various other mechanical parameters due introduction of metallic (Cu and Ti) interfacial layers. • Increase in indentation load leads to degradation in mechanical properties. In the present study, we explored the effect of metallic interlayers (Cu and Ti) and indentation loads (5–20mN) on the mechanical properties of plasma produced diamond-like carbon (DLC) thin films. Also a comparison has been made for mechanical properties of these films with pure DLC and nitrogen incorporated DLC films. Introduction of N in DLC led to a drastic decrease in residual stress (S) from 1.8 to 0.7GPa, but with expenses of hardness (H) and other mechanical properties. In contrast, addition of Cu and Ti interlayers between substrate Si and DLC, results in significant decrease in S with little enhancement of hardness and other mechanical properties. Among various DLC films, maximum hardness 30.8GPa is observed in Ti-DLC film. Besides hardness and elastic modulus, various other mechanical parameters have also been estimated using load versus displacement curves.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Copper</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Diamond-like carbon (DLC)</subject><subject>Diamond-like carbon films</subject><subject>Exact sciences and technology</subject><subject>Hardness</subject><subject>Indentation</subject><subject>Interlayers</subject><subject>Mechanical properties</subject><subject>PECVD</subject><subject>Physics</subject><subject>Silicon substrates</subject><subject>Stress</subject><subject>Thin films</subject><subject>Titanium</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78Aw-9iKfWTJO2m4sgi67Cohc9h2k-MGubrkkr-O_N0sWjp2HmfWZe5iXkCmgBFOrbbYG7OEVVlBSgoHUBwI_IApYNy6tqyY_JImEi54yVp-Qsxi2lUCZ1QdYv6AfntfEjjm7wWW8wTsH0aRCzfT9oZ53RmXbYD17nnfs0mcLQJnH8cD6zruvjBTmx2EVzeajn5P3x4W31lG9e18-r-02uOONjrhgARY1NKxRyq0Gzxtasgra1JUewygIXtWorC1VptV3qxLdW8AZb2lJ2Tm7mu7swfE0mjrJ3UZmuQ2-GKUoBQtBGsDqRfCZVGGIMxspdcD2GHwlU7mOTWznHJvexSVrLFFtauz4YYFTY2YBeufi3W3IuSiYgcXczZ9K3384EGZUzXhntglGj1IP73-gXEdCGxw</recordid><startdate>20110915</startdate><enddate>20110915</enddate><creator>Dwivedi, Neeraj</creator><creator>Kumar, Sushil</creator><creator>Malik, Hitendra K.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110915</creationdate><title>Nanoindentation measurements on modified diamond-like carbon thin films</title><author>Dwivedi, Neeraj ; Kumar, Sushil ; Malik, Hitendra K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-c3110ada7b9ca4fd1d37f6351bbf24a1fcf1496cb5f152fdf8d10abf947ab0b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Copper</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Diamond-like carbon (DLC)</topic><topic>Diamond-like carbon films</topic><topic>Exact sciences and technology</topic><topic>Hardness</topic><topic>Indentation</topic><topic>Interlayers</topic><topic>Mechanical properties</topic><topic>PECVD</topic><topic>Physics</topic><topic>Silicon substrates</topic><topic>Stress</topic><topic>Thin films</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dwivedi, Neeraj</creatorcontrib><creatorcontrib>Kumar, Sushil</creatorcontrib><creatorcontrib>Malik, Hitendra K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dwivedi, Neeraj</au><au>Kumar, Sushil</au><au>Malik, Hitendra K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoindentation measurements on modified diamond-like carbon thin films</atitle><jtitle>Applied surface science</jtitle><date>2011-09-15</date><risdate>2011</risdate><volume>257</volume><issue>23</issue><spage>9953</spage><epage>9959</epage><pages>9953-9959</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>• Stress reduction in DLC due to introduction of nitrogen, copper and titanium. • Improvement in hardness, elastic modulus and various other mechanical parameters due introduction of metallic (Cu and Ti) interfacial layers. • Increase in indentation load leads to degradation in mechanical properties. In the present study, we explored the effect of metallic interlayers (Cu and Ti) and indentation loads (5–20mN) on the mechanical properties of plasma produced diamond-like carbon (DLC) thin films. Also a comparison has been made for mechanical properties of these films with pure DLC and nitrogen incorporated DLC films. Introduction of N in DLC led to a drastic decrease in residual stress (S) from 1.8 to 0.7GPa, but with expenses of hardness (H) and other mechanical properties. In contrast, addition of Cu and Ti interlayers between substrate Si and DLC, results in significant decrease in S with little enhancement of hardness and other mechanical properties. Among various DLC films, maximum hardness 30.8GPa is observed in Ti-DLC film. Besides hardness and elastic modulus, various other mechanical parameters have also been estimated using load versus displacement curves.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2011.06.114</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2011-09, Vol.257 (23), p.9953-9959
issn 0169-4332
1873-5584
language eng
recordid cdi_proquest_miscellaneous_919907936
source Elsevier ScienceDirect Journals Complete
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Copper
Cross-disciplinary physics: materials science
rheology
Diamond-like carbon (DLC)
Diamond-like carbon films
Exact sciences and technology
Hardness
Indentation
Interlayers
Mechanical properties
PECVD
Physics
Silicon substrates
Stress
Thin films
Titanium
title Nanoindentation measurements on modified diamond-like carbon thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoindentation%20measurements%20on%20modified%20diamond-like%20carbon%20thin%20films&rft.jtitle=Applied%20surface%20science&rft.au=Dwivedi,%20Neeraj&rft.date=2011-09-15&rft.volume=257&rft.issue=23&rft.spage=9953&rft.epage=9959&rft.pages=9953-9959&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2011.06.114&rft_dat=%3Cproquest_cross%3E919907936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919907936&rft_id=info:pmid/&rft_els_id=S0169433211009901&rfr_iscdi=true