Fabrication of silk sericin nanofibers from a silk sericin-hope cocoon with electrospinning method
► Silk sericin (SS) nanofibers were prepared from SS hope cocoon by electrospinning. ► The fiber morphology and fine structures influenced by spinning conditions. ► Optimum spinning conditions: SS solution conc. 8%; voltage 25kV; distance 15cm. ► The mean fiber diameter varied from 114 to 430nm at o...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2012-03, Vol.50 (2), p.337-347 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 347 |
---|---|
container_issue | 2 |
container_start_page | 337 |
container_title | International journal of biological macromolecules |
container_volume | 50 |
creator | Zhang, Xianhua Khan, Md. Majibur Rahman Yamamoto, Toshio Tsukada, Masuhiro Morikawa, Hideaki |
description | ► Silk sericin (SS) nanofibers were prepared from SS hope cocoon by electrospinning. ► The fiber morphology and fine structures influenced by spinning conditions. ► Optimum spinning conditions: SS solution conc. 8%; voltage 25kV; distance 15cm. ► The mean fiber diameter varied from 114 to 430nm at optimum spinning conditions. ► The SS fibers exhibited a β-sheet structure after methanol treatment.
In this study, silk sericin nanofibers from sericin hope-silkworm, whose cocoons consist almost exclusively of sericin were successfully prepared by electrospinning method. Scanning electron microscopy (SEM) was used to observe the morphology of the fibers. The effect of spinning conditions, including the concentration of sericin cocoon solution, acceleration voltage, spinning distance and flow rate on the fiber morphologies and the size distribution of sericin nanofibers were examined. The structure and physical properties were also observed by Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). The optimum conditions for producing finely thinner fibrous sericin nanofibers without beads were the concentration of sericin solution above 6–8wt%, acceleration voltage ranging from 25 to 32kV, spinning distance above 9cm, and flow rate above 0.06cmmin−1. The mean diameter of as spun sericin fibers varied from 114 to 430nm at the different spinning conditions. In the as-spun fibers, silk sericin was present in a random coil conformation, while after methanol treatment, the molecular structure of silk sericin was transformed into a β-sheet containing structure. Sericin hope nanofiber demonstrated thermal degradation at lower temperature than the sericin hope cocoon, which probably due to the randomly coiled rich structure of the sericin hope nanofiber. |
doi_str_mv | 10.1016/j.ijbiomac.2011.12.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919226545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813011004673</els_id><sourcerecordid>919226545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-d9cbeb45b4fcd2c465b09e242bc9bd6bd02933122edf9a4eb73bdf8ac241fe883</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi1URLeFv1B86ynB4yTe-FZU0Q-pEgfo2fLHuOslsRc7S8W_x9W2lTj1NNLM886MHkLOgLXAQHzZtmFrQpq1bTkDaIG3jIl3ZAXjWjaMse6IrBj00IzQsWNyUsq2dsUA4wdyzDnIUQxiRcyVNjlYvYQUafK0hOkXLVhbIdKoY_LBYC7U5zRT_d-42aQdUptsqtHHsGwoTmiXnMouxBjiA51x2ST3kbz3eir46bmekvurbz8vb5q779e3l1_vGttJWBonrUHTD6b31nHbi8EwibznxkrjhHGMy64DztF5qXs06844P2rLe_A4jt0pOT_s3eX0e49lUXMoFqdJR0z7oiRIzsXQD5UUB9LWZ0tGr3Y5zDr_VcDUk161VS961ZNeBVxVeTV49nxib2Z0r7EXnxX4fAC8Tko_5FDU_Y-6QVT3w7jmvBIXBwKrij8Bsyo2YLToQq72lEvhrS_-AeeLmrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919226545</pqid></control><display><type>article</type><title>Fabrication of silk sericin nanofibers from a silk sericin-hope cocoon with electrospinning method</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Zhang, Xianhua ; Khan, Md. Majibur Rahman ; Yamamoto, Toshio ; Tsukada, Masuhiro ; Morikawa, Hideaki</creator><creatorcontrib>Zhang, Xianhua ; Khan, Md. Majibur Rahman ; Yamamoto, Toshio ; Tsukada, Masuhiro ; Morikawa, Hideaki</creatorcontrib><description>► Silk sericin (SS) nanofibers were prepared from SS hope cocoon by electrospinning. ► The fiber morphology and fine structures influenced by spinning conditions. ► Optimum spinning conditions: SS solution conc. 8%; voltage 25kV; distance 15cm. ► The mean fiber diameter varied from 114 to 430nm at optimum spinning conditions. ► The SS fibers exhibited a β-sheet structure after methanol treatment.
In this study, silk sericin nanofibers from sericin hope-silkworm, whose cocoons consist almost exclusively of sericin were successfully prepared by electrospinning method. Scanning electron microscopy (SEM) was used to observe the morphology of the fibers. The effect of spinning conditions, including the concentration of sericin cocoon solution, acceleration voltage, spinning distance and flow rate on the fiber morphologies and the size distribution of sericin nanofibers were examined. The structure and physical properties were also observed by Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). The optimum conditions for producing finely thinner fibrous sericin nanofibers without beads were the concentration of sericin solution above 6–8wt%, acceleration voltage ranging from 25 to 32kV, spinning distance above 9cm, and flow rate above 0.06cmmin−1. The mean diameter of as spun sericin fibers varied from 114 to 430nm at the different spinning conditions. In the as-spun fibers, silk sericin was present in a random coil conformation, while after methanol treatment, the molecular structure of silk sericin was transformed into a β-sheet containing structure. Sericin hope nanofiber demonstrated thermal degradation at lower temperature than the sericin hope cocoon, which probably due to the randomly coiled rich structure of the sericin hope nanofiber.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2011.12.006</identifier><identifier>PMID: 22198656</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Bombyx - chemistry ; chemical structure ; cocoons ; differential scanning calorimetry ; Electrospinning ; Fiber diameter ; Fourier transform infrared spectroscopy ; Materials Testing ; methanol ; Nanofibers ; Nanofibers - chemistry ; Nanofibers - ultrastructure ; scanning electron microscopy ; sericin ; Sericins - chemistry ; silk ; Silk - chemistry ; Silk sericin hope cocoon ; Spectroscopy, Fourier Transform Infrared ; spinning ; Structure and properties ; Surface morphology ; Surface Properties ; temperature ; thermal degradation ; Thermogravimetry</subject><ispartof>International journal of biological macromolecules, 2012-03, Vol.50 (2), p.337-347</ispartof><rights>2011 Elsevier B.V.</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-d9cbeb45b4fcd2c465b09e242bc9bd6bd02933122edf9a4eb73bdf8ac241fe883</citedby><cites>FETCH-LOGICAL-c391t-d9cbeb45b4fcd2c465b09e242bc9bd6bd02933122edf9a4eb73bdf8ac241fe883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2011.12.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22198656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xianhua</creatorcontrib><creatorcontrib>Khan, Md. Majibur Rahman</creatorcontrib><creatorcontrib>Yamamoto, Toshio</creatorcontrib><creatorcontrib>Tsukada, Masuhiro</creatorcontrib><creatorcontrib>Morikawa, Hideaki</creatorcontrib><title>Fabrication of silk sericin nanofibers from a silk sericin-hope cocoon with electrospinning method</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>► Silk sericin (SS) nanofibers were prepared from SS hope cocoon by electrospinning. ► The fiber morphology and fine structures influenced by spinning conditions. ► Optimum spinning conditions: SS solution conc. 8%; voltage 25kV; distance 15cm. ► The mean fiber diameter varied from 114 to 430nm at optimum spinning conditions. ► The SS fibers exhibited a β-sheet structure after methanol treatment.
In this study, silk sericin nanofibers from sericin hope-silkworm, whose cocoons consist almost exclusively of sericin were successfully prepared by electrospinning method. Scanning electron microscopy (SEM) was used to observe the morphology of the fibers. The effect of spinning conditions, including the concentration of sericin cocoon solution, acceleration voltage, spinning distance and flow rate on the fiber morphologies and the size distribution of sericin nanofibers were examined. The structure and physical properties were also observed by Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). The optimum conditions for producing finely thinner fibrous sericin nanofibers without beads were the concentration of sericin solution above 6–8wt%, acceleration voltage ranging from 25 to 32kV, spinning distance above 9cm, and flow rate above 0.06cmmin−1. The mean diameter of as spun sericin fibers varied from 114 to 430nm at the different spinning conditions. In the as-spun fibers, silk sericin was present in a random coil conformation, while after methanol treatment, the molecular structure of silk sericin was transformed into a β-sheet containing structure. Sericin hope nanofiber demonstrated thermal degradation at lower temperature than the sericin hope cocoon, which probably due to the randomly coiled rich structure of the sericin hope nanofiber.</description><subject>Animals</subject><subject>Bombyx - chemistry</subject><subject>chemical structure</subject><subject>cocoons</subject><subject>differential scanning calorimetry</subject><subject>Electrospinning</subject><subject>Fiber diameter</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Materials Testing</subject><subject>methanol</subject><subject>Nanofibers</subject><subject>Nanofibers - chemistry</subject><subject>Nanofibers - ultrastructure</subject><subject>scanning electron microscopy</subject><subject>sericin</subject><subject>Sericins - chemistry</subject><subject>silk</subject><subject>Silk - chemistry</subject><subject>Silk sericin hope cocoon</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>spinning</subject><subject>Structure and properties</subject><subject>Surface morphology</subject><subject>Surface Properties</subject><subject>temperature</subject><subject>thermal degradation</subject><subject>Thermogravimetry</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQhi1URLeFv1B86ynB4yTe-FZU0Q-pEgfo2fLHuOslsRc7S8W_x9W2lTj1NNLM886MHkLOgLXAQHzZtmFrQpq1bTkDaIG3jIl3ZAXjWjaMse6IrBj00IzQsWNyUsq2dsUA4wdyzDnIUQxiRcyVNjlYvYQUafK0hOkXLVhbIdKoY_LBYC7U5zRT_d-42aQdUptsqtHHsGwoTmiXnMouxBjiA51x2ST3kbz3eir46bmekvurbz8vb5q779e3l1_vGttJWBonrUHTD6b31nHbi8EwibznxkrjhHGMy64DztF5qXs06844P2rLe_A4jt0pOT_s3eX0e49lUXMoFqdJR0z7oiRIzsXQD5UUB9LWZ0tGr3Y5zDr_VcDUk161VS961ZNeBVxVeTV49nxib2Z0r7EXnxX4fAC8Tko_5FDU_Y-6QVT3w7jmvBIXBwKrij8Bsyo2YLToQq72lEvhrS_-AeeLmrQ</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Zhang, Xianhua</creator><creator>Khan, Md. Majibur Rahman</creator><creator>Yamamoto, Toshio</creator><creator>Tsukada, Masuhiro</creator><creator>Morikawa, Hideaki</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120301</creationdate><title>Fabrication of silk sericin nanofibers from a silk sericin-hope cocoon with electrospinning method</title><author>Zhang, Xianhua ; Khan, Md. Majibur Rahman ; Yamamoto, Toshio ; Tsukada, Masuhiro ; Morikawa, Hideaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-d9cbeb45b4fcd2c465b09e242bc9bd6bd02933122edf9a4eb73bdf8ac241fe883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Bombyx - chemistry</topic><topic>chemical structure</topic><topic>cocoons</topic><topic>differential scanning calorimetry</topic><topic>Electrospinning</topic><topic>Fiber diameter</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Materials Testing</topic><topic>methanol</topic><topic>Nanofibers</topic><topic>Nanofibers - chemistry</topic><topic>Nanofibers - ultrastructure</topic><topic>scanning electron microscopy</topic><topic>sericin</topic><topic>Sericins - chemistry</topic><topic>silk</topic><topic>Silk - chemistry</topic><topic>Silk sericin hope cocoon</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>spinning</topic><topic>Structure and properties</topic><topic>Surface morphology</topic><topic>Surface Properties</topic><topic>temperature</topic><topic>thermal degradation</topic><topic>Thermogravimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xianhua</creatorcontrib><creatorcontrib>Khan, Md. Majibur Rahman</creatorcontrib><creatorcontrib>Yamamoto, Toshio</creatorcontrib><creatorcontrib>Tsukada, Masuhiro</creatorcontrib><creatorcontrib>Morikawa, Hideaki</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xianhua</au><au>Khan, Md. Majibur Rahman</au><au>Yamamoto, Toshio</au><au>Tsukada, Masuhiro</au><au>Morikawa, Hideaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of silk sericin nanofibers from a silk sericin-hope cocoon with electrospinning method</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>50</volume><issue>2</issue><spage>337</spage><epage>347</epage><pages>337-347</pages><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>► Silk sericin (SS) nanofibers were prepared from SS hope cocoon by electrospinning. ► The fiber morphology and fine structures influenced by spinning conditions. ► Optimum spinning conditions: SS solution conc. 8%; voltage 25kV; distance 15cm. ► The mean fiber diameter varied from 114 to 430nm at optimum spinning conditions. ► The SS fibers exhibited a β-sheet structure after methanol treatment.
In this study, silk sericin nanofibers from sericin hope-silkworm, whose cocoons consist almost exclusively of sericin were successfully prepared by electrospinning method. Scanning electron microscopy (SEM) was used to observe the morphology of the fibers. The effect of spinning conditions, including the concentration of sericin cocoon solution, acceleration voltage, spinning distance and flow rate on the fiber morphologies and the size distribution of sericin nanofibers were examined. The structure and physical properties were also observed by Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). The optimum conditions for producing finely thinner fibrous sericin nanofibers without beads were the concentration of sericin solution above 6–8wt%, acceleration voltage ranging from 25 to 32kV, spinning distance above 9cm, and flow rate above 0.06cmmin−1. The mean diameter of as spun sericin fibers varied from 114 to 430nm at the different spinning conditions. In the as-spun fibers, silk sericin was present in a random coil conformation, while after methanol treatment, the molecular structure of silk sericin was transformed into a β-sheet containing structure. Sericin hope nanofiber demonstrated thermal degradation at lower temperature than the sericin hope cocoon, which probably due to the randomly coiled rich structure of the sericin hope nanofiber.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>22198656</pmid><doi>10.1016/j.ijbiomac.2011.12.006</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8130 |
ispartof | International journal of biological macromolecules, 2012-03, Vol.50 (2), p.337-347 |
issn | 0141-8130 1879-0003 |
language | eng |
recordid | cdi_proquest_miscellaneous_919226545 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Bombyx - chemistry chemical structure cocoons differential scanning calorimetry Electrospinning Fiber diameter Fourier transform infrared spectroscopy Materials Testing methanol Nanofibers Nanofibers - chemistry Nanofibers - ultrastructure scanning electron microscopy sericin Sericins - chemistry silk Silk - chemistry Silk sericin hope cocoon Spectroscopy, Fourier Transform Infrared spinning Structure and properties Surface morphology Surface Properties temperature thermal degradation Thermogravimetry |
title | Fabrication of silk sericin nanofibers from a silk sericin-hope cocoon with electrospinning method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T01%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20silk%20sericin%20nanofibers%20from%20a%20silk%20sericin-hope%20cocoon%20with%20electrospinning%20method&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Zhang,%20Xianhua&rft.date=2012-03-01&rft.volume=50&rft.issue=2&rft.spage=337&rft.epage=347&rft.pages=337-347&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2011.12.006&rft_dat=%3Cproquest_cross%3E919226545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919226545&rft_id=info:pmid/22198656&rft_els_id=S0141813011004673&rfr_iscdi=true |