Screening analysis of beer ageing using near infrared spectroscopy and the Successive Projections Algorithm for variable selection

► Near infrared spectroscopy (NIR) is used for screening analysis of aged beers. ► Variable selection is accomplished by using the Successive Projections Algorithm (SPA). ► Only one wavenumber is selected for screening analysis of non-alcoholic or alcoholic beers. ► NIR and SPA-LDA can be used for q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2012-01, Vol.89, p.286-291
Hauptverfasser: Ghasemi-Varnamkhasti, Mahdi, Mohtasebi, Seyed Saied, Rodriguez-Mendez, Maria Luz, Gomes, Adriano A., Araújo, Mario Cesar Ugulino, Galvão, Roberto K.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue
container_start_page 286
container_title Talanta (Oxford)
container_volume 89
creator Ghasemi-Varnamkhasti, Mahdi
Mohtasebi, Seyed Saied
Rodriguez-Mendez, Maria Luz
Gomes, Adriano A.
Araújo, Mario Cesar Ugulino
Galvão, Roberto K.H.
description ► Near infrared spectroscopy (NIR) is used for screening analysis of aged beers. ► Variable selection is accomplished by using the Successive Projections Algorithm (SPA). ► Only one wavenumber is selected for screening analysis of non-alcoholic or alcoholic beers. ► NIR and SPA-LDA can be used for quality control of beer samples. This work proposes a method for monitoring the ageing of beer using near-infrared (NIR) spectroscopy and chemometrics classification tools. For this purpose, the Successive Projections Algorithm (SPA) is used to select spectral variables for construction of Linear Discriminant Analysis (LDA) classification models. A total of 83 alcoholic and non-alcoholic beer samples packaged in bottles and cans were examined. To simulate a long storage period, some of the samples were stored in an oven at 40°C, in the dark, during intervals of 10 and 20 days. The NIR spectrum of these samples in the range 12,500–5405cm−1 was then compared against those of the fresh samples. The results of a Principal Component Analysis (PCA) indicated that the alcoholic beer samples could be clearly discriminated with respect to ageing stage (fresh, 10-day or 20-day forced ageing). However, such discrimination was not apparent for the non-alcoholic samples. These findings were corroborated by a classification study using Soft Independent Modelling of Class Analogy (SIMCA). In contrast, the use of SPA-LDA provided good results for both types of beer (only one misclassified sample) by using a single wavenumber in each case, namely 5550cm−1 for non-alcoholic samples and 7228cm−1 for alcoholic samples.
doi_str_mv 10.1016/j.talanta.2011.12.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918935277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039914011010988</els_id><sourcerecordid>1022895567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-63a961358429ca7df247f276ec3e28afe3dce41e8cbc7a05b75feb53408093bc3</originalsourceid><addsrcrecordid>eNqF0U9rFDEYBvAgit1WP4KSi7SXGfN3MnOSUrQVCgrVc8hk3tlmmZ2seWcW9uonN8Ou9VYvCYTfm4TnIeQdZyVnvPq4KSc3uHFypWCcl1yUTLIXZMVrIwupjXxJVozJpmi4YmfkHHHDGBOSydfkTAhRK9WoFfn94BPAGMY1daMbDhiQxp62AIm6NSznMy7rCC7RMPbJJego7sBPKaKPu0Me7Oj0CPRh9h4Qwx7o9xQ3WYQ4Ir0e1jGF6XFL-5jo3qXg2gEownAUb8ir3g0Ib0_7Bfn55fOPm7vi_tvt15vr-8Iro6aikq6puNS1Eo13puuFMr0wFXgJonY9yM6D4lD71hvHdGt0D62WitWska2XF-TyeO8uxV8z4GS3AT0MOUWIM9qG143Uwpgsr56VnOX8Gq2rheoj9TkNTNDbXQpblw4Z2aUou7GnouxSlOXC5qLy3PvTE3O7he5p6m8zGXw4AYfeDTn30Qf853TFa6F5dp-ODnJ0-wDJog8weuhCyvnaLob_fOUPne22bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022895567</pqid></control><display><type>article</type><title>Screening analysis of beer ageing using near infrared spectroscopy and the Successive Projections Algorithm for variable selection</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ghasemi-Varnamkhasti, Mahdi ; Mohtasebi, Seyed Saied ; Rodriguez-Mendez, Maria Luz ; Gomes, Adriano A. ; Araújo, Mario Cesar Ugulino ; Galvão, Roberto K.H.</creator><creatorcontrib>Ghasemi-Varnamkhasti, Mahdi ; Mohtasebi, Seyed Saied ; Rodriguez-Mendez, Maria Luz ; Gomes, Adriano A. ; Araújo, Mario Cesar Ugulino ; Galvão, Roberto K.H.</creatorcontrib><description>► Near infrared spectroscopy (NIR) is used for screening analysis of aged beers. ► Variable selection is accomplished by using the Successive Projections Algorithm (SPA). ► Only one wavenumber is selected for screening analysis of non-alcoholic or alcoholic beers. ► NIR and SPA-LDA can be used for quality control of beer samples. This work proposes a method for monitoring the ageing of beer using near-infrared (NIR) spectroscopy and chemometrics classification tools. For this purpose, the Successive Projections Algorithm (SPA) is used to select spectral variables for construction of Linear Discriminant Analysis (LDA) classification models. A total of 83 alcoholic and non-alcoholic beer samples packaged in bottles and cans were examined. To simulate a long storage period, some of the samples were stored in an oven at 40°C, in the dark, during intervals of 10 and 20 days. The NIR spectrum of these samples in the range 12,500–5405cm−1 was then compared against those of the fresh samples. The results of a Principal Component Analysis (PCA) indicated that the alcoholic beer samples could be clearly discriminated with respect to ageing stage (fresh, 10-day or 20-day forced ageing). However, such discrimination was not apparent for the non-alcoholic samples. These findings were corroborated by a classification study using Soft Independent Modelling of Class Analogy (SIMCA). In contrast, the use of SPA-LDA provided good results for both types of beer (only one misclassified sample) by using a single wavenumber in each case, namely 5550cm−1 for non-alcoholic samples and 7228cm−1 for alcoholic samples.</description><identifier>ISSN: 0039-9140</identifier><identifier>EISSN: 1873-3573</identifier><identifier>DOI: 10.1016/j.talanta.2011.12.030</identifier><identifier>PMID: 22284494</identifier><identifier>CODEN: TLNTA2</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Ageing ; Aging ; Algorithms ; Analytical chemistry ; Beer ; Beer - analysis ; Chemistry ; Chemometrics ; Classification ; Discriminant Analysis ; Exact sciences and technology ; Food Storage ; Linear Discriminant Analysis ; Linear Models ; Mathematical models ; Near infrared spectroscopy ; Principal Component Analysis ; Projection ; Software ; Spectrometric and optical methods ; Spectroscopy, Near-Infrared ; Successive Projections Algorithm ; Wavelength selection</subject><ispartof>Talanta (Oxford), 2012-01, Vol.89, p.286-291</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-63a961358429ca7df247f276ec3e28afe3dce41e8cbc7a05b75feb53408093bc3</citedby><cites>FETCH-LOGICAL-c474t-63a961358429ca7df247f276ec3e28afe3dce41e8cbc7a05b75feb53408093bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.talanta.2011.12.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25618251$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22284494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghasemi-Varnamkhasti, Mahdi</creatorcontrib><creatorcontrib>Mohtasebi, Seyed Saied</creatorcontrib><creatorcontrib>Rodriguez-Mendez, Maria Luz</creatorcontrib><creatorcontrib>Gomes, Adriano A.</creatorcontrib><creatorcontrib>Araújo, Mario Cesar Ugulino</creatorcontrib><creatorcontrib>Galvão, Roberto K.H.</creatorcontrib><title>Screening analysis of beer ageing using near infrared spectroscopy and the Successive Projections Algorithm for variable selection</title><title>Talanta (Oxford)</title><addtitle>Talanta</addtitle><description>► Near infrared spectroscopy (NIR) is used for screening analysis of aged beers. ► Variable selection is accomplished by using the Successive Projections Algorithm (SPA). ► Only one wavenumber is selected for screening analysis of non-alcoholic or alcoholic beers. ► NIR and SPA-LDA can be used for quality control of beer samples. This work proposes a method for monitoring the ageing of beer using near-infrared (NIR) spectroscopy and chemometrics classification tools. For this purpose, the Successive Projections Algorithm (SPA) is used to select spectral variables for construction of Linear Discriminant Analysis (LDA) classification models. A total of 83 alcoholic and non-alcoholic beer samples packaged in bottles and cans were examined. To simulate a long storage period, some of the samples were stored in an oven at 40°C, in the dark, during intervals of 10 and 20 days. The NIR spectrum of these samples in the range 12,500–5405cm−1 was then compared against those of the fresh samples. The results of a Principal Component Analysis (PCA) indicated that the alcoholic beer samples could be clearly discriminated with respect to ageing stage (fresh, 10-day or 20-day forced ageing). However, such discrimination was not apparent for the non-alcoholic samples. These findings were corroborated by a classification study using Soft Independent Modelling of Class Analogy (SIMCA). In contrast, the use of SPA-LDA provided good results for both types of beer (only one misclassified sample) by using a single wavenumber in each case, namely 5550cm−1 for non-alcoholic samples and 7228cm−1 for alcoholic samples.</description><subject>Ageing</subject><subject>Aging</subject><subject>Algorithms</subject><subject>Analytical chemistry</subject><subject>Beer</subject><subject>Beer - analysis</subject><subject>Chemistry</subject><subject>Chemometrics</subject><subject>Classification</subject><subject>Discriminant Analysis</subject><subject>Exact sciences and technology</subject><subject>Food Storage</subject><subject>Linear Discriminant Analysis</subject><subject>Linear Models</subject><subject>Mathematical models</subject><subject>Near infrared spectroscopy</subject><subject>Principal Component Analysis</subject><subject>Projection</subject><subject>Software</subject><subject>Spectrometric and optical methods</subject><subject>Spectroscopy, Near-Infrared</subject><subject>Successive Projections Algorithm</subject><subject>Wavelength selection</subject><issn>0039-9140</issn><issn>1873-3573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U9rFDEYBvAgit1WP4KSi7SXGfN3MnOSUrQVCgrVc8hk3tlmmZ2seWcW9uonN8Ou9VYvCYTfm4TnIeQdZyVnvPq4KSc3uHFypWCcl1yUTLIXZMVrIwupjXxJVozJpmi4YmfkHHHDGBOSydfkTAhRK9WoFfn94BPAGMY1daMbDhiQxp62AIm6NSznMy7rCC7RMPbJJego7sBPKaKPu0Me7Oj0CPRh9h4Qwx7o9xQ3WYQ4Ir0e1jGF6XFL-5jo3qXg2gEownAUb8ir3g0Ib0_7Bfn55fOPm7vi_tvt15vr-8Iro6aikq6puNS1Eo13puuFMr0wFXgJonY9yM6D4lD71hvHdGt0D62WitWska2XF-TyeO8uxV8z4GS3AT0MOUWIM9qG143Uwpgsr56VnOX8Gq2rheoj9TkNTNDbXQpblw4Z2aUou7GnouxSlOXC5qLy3PvTE3O7he5p6m8zGXw4AYfeDTn30Qf853TFa6F5dp-ODnJ0-wDJog8weuhCyvnaLob_fOUPne22bw</recordid><startdate>20120130</startdate><enddate>20120130</enddate><creator>Ghasemi-Varnamkhasti, Mahdi</creator><creator>Mohtasebi, Seyed Saied</creator><creator>Rodriguez-Mendez, Maria Luz</creator><creator>Gomes, Adriano A.</creator><creator>Araújo, Mario Cesar Ugulino</creator><creator>Galvão, Roberto K.H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>20120130</creationdate><title>Screening analysis of beer ageing using near infrared spectroscopy and the Successive Projections Algorithm for variable selection</title><author>Ghasemi-Varnamkhasti, Mahdi ; Mohtasebi, Seyed Saied ; Rodriguez-Mendez, Maria Luz ; Gomes, Adriano A. ; Araújo, Mario Cesar Ugulino ; Galvão, Roberto K.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-63a961358429ca7df247f276ec3e28afe3dce41e8cbc7a05b75feb53408093bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ageing</topic><topic>Aging</topic><topic>Algorithms</topic><topic>Analytical chemistry</topic><topic>Beer</topic><topic>Beer - analysis</topic><topic>Chemistry</topic><topic>Chemometrics</topic><topic>Classification</topic><topic>Discriminant Analysis</topic><topic>Exact sciences and technology</topic><topic>Food Storage</topic><topic>Linear Discriminant Analysis</topic><topic>Linear Models</topic><topic>Mathematical models</topic><topic>Near infrared spectroscopy</topic><topic>Principal Component Analysis</topic><topic>Projection</topic><topic>Software</topic><topic>Spectrometric and optical methods</topic><topic>Spectroscopy, Near-Infrared</topic><topic>Successive Projections Algorithm</topic><topic>Wavelength selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghasemi-Varnamkhasti, Mahdi</creatorcontrib><creatorcontrib>Mohtasebi, Seyed Saied</creatorcontrib><creatorcontrib>Rodriguez-Mendez, Maria Luz</creatorcontrib><creatorcontrib>Gomes, Adriano A.</creatorcontrib><creatorcontrib>Araújo, Mario Cesar Ugulino</creatorcontrib><creatorcontrib>Galvão, Roberto K.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Talanta (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghasemi-Varnamkhasti, Mahdi</au><au>Mohtasebi, Seyed Saied</au><au>Rodriguez-Mendez, Maria Luz</au><au>Gomes, Adriano A.</au><au>Araújo, Mario Cesar Ugulino</au><au>Galvão, Roberto K.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Screening analysis of beer ageing using near infrared spectroscopy and the Successive Projections Algorithm for variable selection</atitle><jtitle>Talanta (Oxford)</jtitle><addtitle>Talanta</addtitle><date>2012-01-30</date><risdate>2012</risdate><volume>89</volume><spage>286</spage><epage>291</epage><pages>286-291</pages><issn>0039-9140</issn><eissn>1873-3573</eissn><coden>TLNTA2</coden><abstract>► Near infrared spectroscopy (NIR) is used for screening analysis of aged beers. ► Variable selection is accomplished by using the Successive Projections Algorithm (SPA). ► Only one wavenumber is selected for screening analysis of non-alcoholic or alcoholic beers. ► NIR and SPA-LDA can be used for quality control of beer samples. This work proposes a method for monitoring the ageing of beer using near-infrared (NIR) spectroscopy and chemometrics classification tools. For this purpose, the Successive Projections Algorithm (SPA) is used to select spectral variables for construction of Linear Discriminant Analysis (LDA) classification models. A total of 83 alcoholic and non-alcoholic beer samples packaged in bottles and cans were examined. To simulate a long storage period, some of the samples were stored in an oven at 40°C, in the dark, during intervals of 10 and 20 days. The NIR spectrum of these samples in the range 12,500–5405cm−1 was then compared against those of the fresh samples. The results of a Principal Component Analysis (PCA) indicated that the alcoholic beer samples could be clearly discriminated with respect to ageing stage (fresh, 10-day or 20-day forced ageing). However, such discrimination was not apparent for the non-alcoholic samples. These findings were corroborated by a classification study using Soft Independent Modelling of Class Analogy (SIMCA). In contrast, the use of SPA-LDA provided good results for both types of beer (only one misclassified sample) by using a single wavenumber in each case, namely 5550cm−1 for non-alcoholic samples and 7228cm−1 for alcoholic samples.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>22284494</pmid><doi>10.1016/j.talanta.2011.12.030</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0039-9140
ispartof Talanta (Oxford), 2012-01, Vol.89, p.286-291
issn 0039-9140
1873-3573
language eng
recordid cdi_proquest_miscellaneous_918935277
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Ageing
Aging
Algorithms
Analytical chemistry
Beer
Beer - analysis
Chemistry
Chemometrics
Classification
Discriminant Analysis
Exact sciences and technology
Food Storage
Linear Discriminant Analysis
Linear Models
Mathematical models
Near infrared spectroscopy
Principal Component Analysis
Projection
Software
Spectrometric and optical methods
Spectroscopy, Near-Infrared
Successive Projections Algorithm
Wavelength selection
title Screening analysis of beer ageing using near infrared spectroscopy and the Successive Projections Algorithm for variable selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Screening%20analysis%20of%20beer%20ageing%20using%20near%20infrared%20spectroscopy%20and%20the%20Successive%20Projections%20Algorithm%20for%20variable%20selection&rft.jtitle=Talanta%20(Oxford)&rft.au=Ghasemi-Varnamkhasti,%20Mahdi&rft.date=2012-01-30&rft.volume=89&rft.spage=286&rft.epage=291&rft.pages=286-291&rft.issn=0039-9140&rft.eissn=1873-3573&rft.coden=TLNTA2&rft_id=info:doi/10.1016/j.talanta.2011.12.030&rft_dat=%3Cproquest_cross%3E1022895567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022895567&rft_id=info:pmid/22284494&rft_els_id=S0039914011010988&rfr_iscdi=true