A new approach to manipulate the fate of single neural stem cells in tissue
This study describes a microinjection technique that allows for the acute manipulation of individual neural stem cells in organotypic slice cultures via direct delivery of biologically active molecules. A challenge in the field of neural stem cell biology is the mechanistic dissection of single stem...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2012-02, Vol.15 (2), p.329-337 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 337 |
---|---|
container_issue | 2 |
container_start_page | 329 |
container_title | Nature neuroscience |
container_volume | 15 |
creator | Taverna, Elena Haffner, Christiane Pepperkok, Rainer Huttner, Wieland B |
description | This study describes a microinjection technique that allows for the acute manipulation of individual neural stem cells in organotypic slice cultures via direct delivery of biologically active molecules.
A challenge in the field of neural stem cell biology is the mechanistic dissection of single stem cell behavior in tissue. Although such behavior can be tracked by sophisticated imaging techniques, current methods of genetic manipulation do not allow researchers to change the level of a defined gene product on a truly acute time scale and are limited to very few genes at a time. To overcome these limitations, we established microinjection of neuroepithelial/radial glial cells (apical progenitors) in organotypic slice culture of embryonic mouse brain. Microinjected apical progenitors showed cell cycle parameters that were indistinguishable to apical progenitors
in utero
, underwent self-renewing divisions and generated neurons. Microinjection of single genes, recombinant proteins or complex mixtures of RNA was found to elicit acute and defined changes in apical progenitor behavior and progeny fate. Thus, apical progenitor microinjection provides a new approach to acutely manipulating single neural stem and progenitor cells in tissue. |
doi_str_mv | 10.1038/nn.3008 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_918575713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A280004853</galeid><sourcerecordid>A280004853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-8a976337cd45766ad6cee51103d8e55563106e27b7f592680abccea235a7386b3</originalsourceid><addsrcrecordid>eNp9kttq3DAQhkVoyKklb1AEvWh64a0O1sGXS0jSkEChh2uhlccbBVveSjJN374y3SbZUIouNEjf_Jp_NAidUrKghOuPISw4IXoPHVFRy4oqJl-VmDSqkkzIQ3Sc0j0hRAndHKBDxqhqKOVH6GaJA_zEdrOJo3V3OI94sMFvpt5mwPkOcDcHY4eTD-seCj1F2-OUYcAO-j5hH3D2KU3wGu13tk_wZrufoO-XF9_OP1W3n6-uz5e3lauVyJW2jZKcK9fWQklpW-kABC0-Wg1CCMkpkcDUSnWiYVITu3IOLOPCKq7lip-g9390S80_JkjZDD7NtdgA45RMQ7VQQlFeyLP_kpTQmhJR07qg716g9-MUQ_ExU0Iy0uhn1Nr2YHzoxhytm0XNkunS4FqL-dnFP6iyWhi8GwN0vpzvJHzYSShMhoe8tlNK5vrrl112697FMaUIndlEP9j4q9Rp5mEwIZh5GAr5dmtpWg3QPnJ_f_-pPalchTXE5553tX4Dt1K2yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1015620984</pqid></control><display><type>article</type><title>A new approach to manipulate the fate of single neural stem cells in tissue</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Taverna, Elena ; Haffner, Christiane ; Pepperkok, Rainer ; Huttner, Wieland B</creator><creatorcontrib>Taverna, Elena ; Haffner, Christiane ; Pepperkok, Rainer ; Huttner, Wieland B</creatorcontrib><description>This study describes a microinjection technique that allows for the acute manipulation of individual neural stem cells in organotypic slice cultures via direct delivery of biologically active molecules.
A challenge in the field of neural stem cell biology is the mechanistic dissection of single stem cell behavior in tissue. Although such behavior can be tracked by sophisticated imaging techniques, current methods of genetic manipulation do not allow researchers to change the level of a defined gene product on a truly acute time scale and are limited to very few genes at a time. To overcome these limitations, we established microinjection of neuroepithelial/radial glial cells (apical progenitors) in organotypic slice culture of embryonic mouse brain. Microinjected apical progenitors showed cell cycle parameters that were indistinguishable to apical progenitors
in utero
, underwent self-renewing divisions and generated neurons. Microinjection of single genes, recombinant proteins or complex mixtures of RNA was found to elicit acute and defined changes in apical progenitor behavior and progeny fate. Thus, apical progenitor microinjection provides a new approach to acutely manipulating single neural stem and progenitor cells in tissue.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.3008</identifier><identifier>PMID: 22179113</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/136 ; 631/378/2183/2182 ; 631/378/2571/2579 ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; cdc42 GTP-Binding Protein - administration & dosage ; cdc42 GTP-Binding Protein - metabolism ; Cell culture ; Cell Cycle - drug effects ; Cell Cycle - genetics ; Cell Differentiation - genetics ; Cell Differentiation - physiology ; Embryo, Mammalian ; Immediate-Early Proteins - genetics ; In Vitro Techniques ; Luminescent Proteins - administration & dosage ; Luminescent Proteins - genetics ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microinjections - methods ; Mutation - genetics ; Neural Stem Cells - drug effects ; Neural Stem Cells - physiology ; Neurobiology ; Neurosciences ; Physiological aspects ; Rhombencephalon - cytology ; Rhombencephalon - embryology ; RNA ; RNA, Messenger - pharmacology ; Stem cells ; technical-report ; Time Factors ; Tumor Suppressor Proteins - genetics</subject><ispartof>Nature neuroscience, 2012-02, Vol.15 (2), p.329-337</ispartof><rights>Springer Nature America, Inc. 2011</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-8a976337cd45766ad6cee51103d8e55563106e27b7f592680abccea235a7386b3</citedby><cites>FETCH-LOGICAL-c475t-8a976337cd45766ad6cee51103d8e55563106e27b7f592680abccea235a7386b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.3008$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.3008$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22179113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taverna, Elena</creatorcontrib><creatorcontrib>Haffner, Christiane</creatorcontrib><creatorcontrib>Pepperkok, Rainer</creatorcontrib><creatorcontrib>Huttner, Wieland B</creatorcontrib><title>A new approach to manipulate the fate of single neural stem cells in tissue</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>This study describes a microinjection technique that allows for the acute manipulation of individual neural stem cells in organotypic slice cultures via direct delivery of biologically active molecules.
A challenge in the field of neural stem cell biology is the mechanistic dissection of single stem cell behavior in tissue. Although such behavior can be tracked by sophisticated imaging techniques, current methods of genetic manipulation do not allow researchers to change the level of a defined gene product on a truly acute time scale and are limited to very few genes at a time. To overcome these limitations, we established microinjection of neuroepithelial/radial glial cells (apical progenitors) in organotypic slice culture of embryonic mouse brain. Microinjected apical progenitors showed cell cycle parameters that were indistinguishable to apical progenitors
in utero
, underwent self-renewing divisions and generated neurons. Microinjection of single genes, recombinant proteins or complex mixtures of RNA was found to elicit acute and defined changes in apical progenitor behavior and progeny fate. Thus, apical progenitor microinjection provides a new approach to acutely manipulating single neural stem and progenitor cells in tissue.</description><subject>631/136</subject><subject>631/378/2183/2182</subject><subject>631/378/2571/2579</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>cdc42 GTP-Binding Protein - administration & dosage</subject><subject>cdc42 GTP-Binding Protein - metabolism</subject><subject>Cell culture</subject><subject>Cell Cycle - drug effects</subject><subject>Cell Cycle - genetics</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Differentiation - physiology</subject><subject>Embryo, Mammalian</subject><subject>Immediate-Early Proteins - genetics</subject><subject>In Vitro Techniques</subject><subject>Luminescent Proteins - administration & dosage</subject><subject>Luminescent Proteins - genetics</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microinjections - methods</subject><subject>Mutation - genetics</subject><subject>Neural Stem Cells - drug effects</subject><subject>Neural Stem Cells - physiology</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Physiological aspects</subject><subject>Rhombencephalon - cytology</subject><subject>Rhombencephalon - embryology</subject><subject>RNA</subject><subject>RNA, Messenger - pharmacology</subject><subject>Stem cells</subject><subject>technical-report</subject><subject>Time Factors</subject><subject>Tumor Suppressor Proteins - genetics</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kttq3DAQhkVoyKklb1AEvWh64a0O1sGXS0jSkEChh2uhlccbBVveSjJN374y3SbZUIouNEjf_Jp_NAidUrKghOuPISw4IXoPHVFRy4oqJl-VmDSqkkzIQ3Sc0j0hRAndHKBDxqhqKOVH6GaJA_zEdrOJo3V3OI94sMFvpt5mwPkOcDcHY4eTD-seCj1F2-OUYcAO-j5hH3D2KU3wGu13tk_wZrufoO-XF9_OP1W3n6-uz5e3lauVyJW2jZKcK9fWQklpW-kABC0-Wg1CCMkpkcDUSnWiYVITu3IOLOPCKq7lip-g9390S80_JkjZDD7NtdgA45RMQ7VQQlFeyLP_kpTQmhJR07qg716g9-MUQ_ExU0Iy0uhn1Nr2YHzoxhytm0XNkunS4FqL-dnFP6iyWhi8GwN0vpzvJHzYSShMhoe8tlNK5vrrl112697FMaUIndlEP9j4q9Rp5mEwIZh5GAr5dmtpWg3QPnJ_f_-pPalchTXE5553tX4Dt1K2yg</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Taverna, Elena</creator><creator>Haffner, Christiane</creator><creator>Pepperkok, Rainer</creator><creator>Huttner, Wieland B</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>20120201</creationdate><title>A new approach to manipulate the fate of single neural stem cells in tissue</title><author>Taverna, Elena ; Haffner, Christiane ; Pepperkok, Rainer ; Huttner, Wieland B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-8a976337cd45766ad6cee51103d8e55563106e27b7f592680abccea235a7386b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/136</topic><topic>631/378/2183/2182</topic><topic>631/378/2571/2579</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>cdc42 GTP-Binding Protein - administration & dosage</topic><topic>cdc42 GTP-Binding Protein - metabolism</topic><topic>Cell culture</topic><topic>Cell Cycle - drug effects</topic><topic>Cell Cycle - genetics</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Differentiation - physiology</topic><topic>Embryo, Mammalian</topic><topic>Immediate-Early Proteins - genetics</topic><topic>In Vitro Techniques</topic><topic>Luminescent Proteins - administration & dosage</topic><topic>Luminescent Proteins - genetics</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microinjections - methods</topic><topic>Mutation - genetics</topic><topic>Neural Stem Cells - drug effects</topic><topic>Neural Stem Cells - physiology</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Physiological aspects</topic><topic>Rhombencephalon - cytology</topic><topic>Rhombencephalon - embryology</topic><topic>RNA</topic><topic>RNA, Messenger - pharmacology</topic><topic>Stem cells</topic><topic>technical-report</topic><topic>Time Factors</topic><topic>Tumor Suppressor Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taverna, Elena</creatorcontrib><creatorcontrib>Haffner, Christiane</creatorcontrib><creatorcontrib>Pepperkok, Rainer</creatorcontrib><creatorcontrib>Huttner, Wieland B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taverna, Elena</au><au>Haffner, Christiane</au><au>Pepperkok, Rainer</au><au>Huttner, Wieland B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new approach to manipulate the fate of single neural stem cells in tissue</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>15</volume><issue>2</issue><spage>329</spage><epage>337</epage><pages>329-337</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>This study describes a microinjection technique that allows for the acute manipulation of individual neural stem cells in organotypic slice cultures via direct delivery of biologically active molecules.
A challenge in the field of neural stem cell biology is the mechanistic dissection of single stem cell behavior in tissue. Although such behavior can be tracked by sophisticated imaging techniques, current methods of genetic manipulation do not allow researchers to change the level of a defined gene product on a truly acute time scale and are limited to very few genes at a time. To overcome these limitations, we established microinjection of neuroepithelial/radial glial cells (apical progenitors) in organotypic slice culture of embryonic mouse brain. Microinjected apical progenitors showed cell cycle parameters that were indistinguishable to apical progenitors
in utero
, underwent self-renewing divisions and generated neurons. Microinjection of single genes, recombinant proteins or complex mixtures of RNA was found to elicit acute and defined changes in apical progenitor behavior and progeny fate. Thus, apical progenitor microinjection provides a new approach to acutely manipulating single neural stem and progenitor cells in tissue.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>22179113</pmid><doi>10.1038/nn.3008</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2012-02, Vol.15 (2), p.329-337 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_proquest_miscellaneous_918575713 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/136 631/378/2183/2182 631/378/2571/2579 Animal Genetics and Genomics Animals Behavioral Sciences Biological Techniques Biomedical and Life Sciences Biomedicine cdc42 GTP-Binding Protein - administration & dosage cdc42 GTP-Binding Protein - metabolism Cell culture Cell Cycle - drug effects Cell Cycle - genetics Cell Differentiation - genetics Cell Differentiation - physiology Embryo, Mammalian Immediate-Early Proteins - genetics In Vitro Techniques Luminescent Proteins - administration & dosage Luminescent Proteins - genetics Mice Mice, Inbred C57BL Mice, Transgenic Microinjections - methods Mutation - genetics Neural Stem Cells - drug effects Neural Stem Cells - physiology Neurobiology Neurosciences Physiological aspects Rhombencephalon - cytology Rhombencephalon - embryology RNA RNA, Messenger - pharmacology Stem cells technical-report Time Factors Tumor Suppressor Proteins - genetics |
title | A new approach to manipulate the fate of single neural stem cells in tissue |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20approach%20to%20manipulate%20the%20fate%20of%20single%20neural%20stem%20cells%20in%20tissue&rft.jtitle=Nature%20neuroscience&rft.au=Taverna,%20Elena&rft.date=2012-02-01&rft.volume=15&rft.issue=2&rft.spage=329&rft.epage=337&rft.pages=329-337&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.3008&rft_dat=%3Cgale_proqu%3EA280004853%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1015620984&rft_id=info:pmid/22179113&rft_galeid=A280004853&rfr_iscdi=true |