A new approach to manipulate the fate of single neural stem cells in tissue

This study describes a microinjection technique that allows for the acute manipulation of individual neural stem cells in organotypic slice cultures via direct delivery of biologically active molecules. A challenge in the field of neural stem cell biology is the mechanistic dissection of single stem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2012-02, Vol.15 (2), p.329-337
Hauptverfasser: Taverna, Elena, Haffner, Christiane, Pepperkok, Rainer, Huttner, Wieland B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 337
container_issue 2
container_start_page 329
container_title Nature neuroscience
container_volume 15
creator Taverna, Elena
Haffner, Christiane
Pepperkok, Rainer
Huttner, Wieland B
description This study describes a microinjection technique that allows for the acute manipulation of individual neural stem cells in organotypic slice cultures via direct delivery of biologically active molecules. A challenge in the field of neural stem cell biology is the mechanistic dissection of single stem cell behavior in tissue. Although such behavior can be tracked by sophisticated imaging techniques, current methods of genetic manipulation do not allow researchers to change the level of a defined gene product on a truly acute time scale and are limited to very few genes at a time. To overcome these limitations, we established microinjection of neuroepithelial/radial glial cells (apical progenitors) in organotypic slice culture of embryonic mouse brain. Microinjected apical progenitors showed cell cycle parameters that were indistinguishable to apical progenitors in utero , underwent self-renewing divisions and generated neurons. Microinjection of single genes, recombinant proteins or complex mixtures of RNA was found to elicit acute and defined changes in apical progenitor behavior and progeny fate. Thus, apical progenitor microinjection provides a new approach to acutely manipulating single neural stem and progenitor cells in tissue.
doi_str_mv 10.1038/nn.3008
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_918575713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A280004853</galeid><sourcerecordid>A280004853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-8a976337cd45766ad6cee51103d8e55563106e27b7f592680abccea235a7386b3</originalsourceid><addsrcrecordid>eNp9kttq3DAQhkVoyKklb1AEvWh64a0O1sGXS0jSkEChh2uhlccbBVveSjJN374y3SbZUIouNEjf_Jp_NAidUrKghOuPISw4IXoPHVFRy4oqJl-VmDSqkkzIQ3Sc0j0hRAndHKBDxqhqKOVH6GaJA_zEdrOJo3V3OI94sMFvpt5mwPkOcDcHY4eTD-seCj1F2-OUYcAO-j5hH3D2KU3wGu13tk_wZrufoO-XF9_OP1W3n6-uz5e3lauVyJW2jZKcK9fWQklpW-kABC0-Wg1CCMkpkcDUSnWiYVITu3IOLOPCKq7lip-g9390S80_JkjZDD7NtdgA45RMQ7VQQlFeyLP_kpTQmhJR07qg716g9-MUQ_ExU0Iy0uhn1Nr2YHzoxhytm0XNkunS4FqL-dnFP6iyWhi8GwN0vpzvJHzYSShMhoe8tlNK5vrrl112697FMaUIndlEP9j4q9Rp5mEwIZh5GAr5dmtpWg3QPnJ_f_-pPalchTXE5553tX4Dt1K2yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1015620984</pqid></control><display><type>article</type><title>A new approach to manipulate the fate of single neural stem cells in tissue</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Taverna, Elena ; Haffner, Christiane ; Pepperkok, Rainer ; Huttner, Wieland B</creator><creatorcontrib>Taverna, Elena ; Haffner, Christiane ; Pepperkok, Rainer ; Huttner, Wieland B</creatorcontrib><description>This study describes a microinjection technique that allows for the acute manipulation of individual neural stem cells in organotypic slice cultures via direct delivery of biologically active molecules. A challenge in the field of neural stem cell biology is the mechanistic dissection of single stem cell behavior in tissue. Although such behavior can be tracked by sophisticated imaging techniques, current methods of genetic manipulation do not allow researchers to change the level of a defined gene product on a truly acute time scale and are limited to very few genes at a time. To overcome these limitations, we established microinjection of neuroepithelial/radial glial cells (apical progenitors) in organotypic slice culture of embryonic mouse brain. Microinjected apical progenitors showed cell cycle parameters that were indistinguishable to apical progenitors in utero , underwent self-renewing divisions and generated neurons. Microinjection of single genes, recombinant proteins or complex mixtures of RNA was found to elicit acute and defined changes in apical progenitor behavior and progeny fate. Thus, apical progenitor microinjection provides a new approach to acutely manipulating single neural stem and progenitor cells in tissue.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.3008</identifier><identifier>PMID: 22179113</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/136 ; 631/378/2183/2182 ; 631/378/2571/2579 ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; cdc42 GTP-Binding Protein - administration &amp; dosage ; cdc42 GTP-Binding Protein - metabolism ; Cell culture ; Cell Cycle - drug effects ; Cell Cycle - genetics ; Cell Differentiation - genetics ; Cell Differentiation - physiology ; Embryo, Mammalian ; Immediate-Early Proteins - genetics ; In Vitro Techniques ; Luminescent Proteins - administration &amp; dosage ; Luminescent Proteins - genetics ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microinjections - methods ; Mutation - genetics ; Neural Stem Cells - drug effects ; Neural Stem Cells - physiology ; Neurobiology ; Neurosciences ; Physiological aspects ; Rhombencephalon - cytology ; Rhombencephalon - embryology ; RNA ; RNA, Messenger - pharmacology ; Stem cells ; technical-report ; Time Factors ; Tumor Suppressor Proteins - genetics</subject><ispartof>Nature neuroscience, 2012-02, Vol.15 (2), p.329-337</ispartof><rights>Springer Nature America, Inc. 2011</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-8a976337cd45766ad6cee51103d8e55563106e27b7f592680abccea235a7386b3</citedby><cites>FETCH-LOGICAL-c475t-8a976337cd45766ad6cee51103d8e55563106e27b7f592680abccea235a7386b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.3008$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.3008$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22179113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taverna, Elena</creatorcontrib><creatorcontrib>Haffner, Christiane</creatorcontrib><creatorcontrib>Pepperkok, Rainer</creatorcontrib><creatorcontrib>Huttner, Wieland B</creatorcontrib><title>A new approach to manipulate the fate of single neural stem cells in tissue</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>This study describes a microinjection technique that allows for the acute manipulation of individual neural stem cells in organotypic slice cultures via direct delivery of biologically active molecules. A challenge in the field of neural stem cell biology is the mechanistic dissection of single stem cell behavior in tissue. Although such behavior can be tracked by sophisticated imaging techniques, current methods of genetic manipulation do not allow researchers to change the level of a defined gene product on a truly acute time scale and are limited to very few genes at a time. To overcome these limitations, we established microinjection of neuroepithelial/radial glial cells (apical progenitors) in organotypic slice culture of embryonic mouse brain. Microinjected apical progenitors showed cell cycle parameters that were indistinguishable to apical progenitors in utero , underwent self-renewing divisions and generated neurons. Microinjection of single genes, recombinant proteins or complex mixtures of RNA was found to elicit acute and defined changes in apical progenitor behavior and progeny fate. Thus, apical progenitor microinjection provides a new approach to acutely manipulating single neural stem and progenitor cells in tissue.</description><subject>631/136</subject><subject>631/378/2183/2182</subject><subject>631/378/2571/2579</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>cdc42 GTP-Binding Protein - administration &amp; dosage</subject><subject>cdc42 GTP-Binding Protein - metabolism</subject><subject>Cell culture</subject><subject>Cell Cycle - drug effects</subject><subject>Cell Cycle - genetics</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Differentiation - physiology</subject><subject>Embryo, Mammalian</subject><subject>Immediate-Early Proteins - genetics</subject><subject>In Vitro Techniques</subject><subject>Luminescent Proteins - administration &amp; dosage</subject><subject>Luminescent Proteins - genetics</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microinjections - methods</subject><subject>Mutation - genetics</subject><subject>Neural Stem Cells - drug effects</subject><subject>Neural Stem Cells - physiology</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Physiological aspects</subject><subject>Rhombencephalon - cytology</subject><subject>Rhombencephalon - embryology</subject><subject>RNA</subject><subject>RNA, Messenger - pharmacology</subject><subject>Stem cells</subject><subject>technical-report</subject><subject>Time Factors</subject><subject>Tumor Suppressor Proteins - genetics</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kttq3DAQhkVoyKklb1AEvWh64a0O1sGXS0jSkEChh2uhlccbBVveSjJN374y3SbZUIouNEjf_Jp_NAidUrKghOuPISw4IXoPHVFRy4oqJl-VmDSqkkzIQ3Sc0j0hRAndHKBDxqhqKOVH6GaJA_zEdrOJo3V3OI94sMFvpt5mwPkOcDcHY4eTD-seCj1F2-OUYcAO-j5hH3D2KU3wGu13tk_wZrufoO-XF9_OP1W3n6-uz5e3lauVyJW2jZKcK9fWQklpW-kABC0-Wg1CCMkpkcDUSnWiYVITu3IOLOPCKq7lip-g9390S80_JkjZDD7NtdgA45RMQ7VQQlFeyLP_kpTQmhJR07qg716g9-MUQ_ExU0Iy0uhn1Nr2YHzoxhytm0XNkunS4FqL-dnFP6iyWhi8GwN0vpzvJHzYSShMhoe8tlNK5vrrl112697FMaUIndlEP9j4q9Rp5mEwIZh5GAr5dmtpWg3QPnJ_f_-pPalchTXE5553tX4Dt1K2yg</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Taverna, Elena</creator><creator>Haffner, Christiane</creator><creator>Pepperkok, Rainer</creator><creator>Huttner, Wieland B</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>20120201</creationdate><title>A new approach to manipulate the fate of single neural stem cells in tissue</title><author>Taverna, Elena ; Haffner, Christiane ; Pepperkok, Rainer ; Huttner, Wieland B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-8a976337cd45766ad6cee51103d8e55563106e27b7f592680abccea235a7386b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/136</topic><topic>631/378/2183/2182</topic><topic>631/378/2571/2579</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>cdc42 GTP-Binding Protein - administration &amp; dosage</topic><topic>cdc42 GTP-Binding Protein - metabolism</topic><topic>Cell culture</topic><topic>Cell Cycle - drug effects</topic><topic>Cell Cycle - genetics</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Differentiation - physiology</topic><topic>Embryo, Mammalian</topic><topic>Immediate-Early Proteins - genetics</topic><topic>In Vitro Techniques</topic><topic>Luminescent Proteins - administration &amp; dosage</topic><topic>Luminescent Proteins - genetics</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microinjections - methods</topic><topic>Mutation - genetics</topic><topic>Neural Stem Cells - drug effects</topic><topic>Neural Stem Cells - physiology</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Physiological aspects</topic><topic>Rhombencephalon - cytology</topic><topic>Rhombencephalon - embryology</topic><topic>RNA</topic><topic>RNA, Messenger - pharmacology</topic><topic>Stem cells</topic><topic>technical-report</topic><topic>Time Factors</topic><topic>Tumor Suppressor Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taverna, Elena</creatorcontrib><creatorcontrib>Haffner, Christiane</creatorcontrib><creatorcontrib>Pepperkok, Rainer</creatorcontrib><creatorcontrib>Huttner, Wieland B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taverna, Elena</au><au>Haffner, Christiane</au><au>Pepperkok, Rainer</au><au>Huttner, Wieland B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new approach to manipulate the fate of single neural stem cells in tissue</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>15</volume><issue>2</issue><spage>329</spage><epage>337</epage><pages>329-337</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>This study describes a microinjection technique that allows for the acute manipulation of individual neural stem cells in organotypic slice cultures via direct delivery of biologically active molecules. A challenge in the field of neural stem cell biology is the mechanistic dissection of single stem cell behavior in tissue. Although such behavior can be tracked by sophisticated imaging techniques, current methods of genetic manipulation do not allow researchers to change the level of a defined gene product on a truly acute time scale and are limited to very few genes at a time. To overcome these limitations, we established microinjection of neuroepithelial/radial glial cells (apical progenitors) in organotypic slice culture of embryonic mouse brain. Microinjected apical progenitors showed cell cycle parameters that were indistinguishable to apical progenitors in utero , underwent self-renewing divisions and generated neurons. Microinjection of single genes, recombinant proteins or complex mixtures of RNA was found to elicit acute and defined changes in apical progenitor behavior and progeny fate. Thus, apical progenitor microinjection provides a new approach to acutely manipulating single neural stem and progenitor cells in tissue.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>22179113</pmid><doi>10.1038/nn.3008</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2012-02, Vol.15 (2), p.329-337
issn 1097-6256
1546-1726
language eng
recordid cdi_proquest_miscellaneous_918575713
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 631/136
631/378/2183/2182
631/378/2571/2579
Animal Genetics and Genomics
Animals
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
cdc42 GTP-Binding Protein - administration & dosage
cdc42 GTP-Binding Protein - metabolism
Cell culture
Cell Cycle - drug effects
Cell Cycle - genetics
Cell Differentiation - genetics
Cell Differentiation - physiology
Embryo, Mammalian
Immediate-Early Proteins - genetics
In Vitro Techniques
Luminescent Proteins - administration & dosage
Luminescent Proteins - genetics
Mice
Mice, Inbred C57BL
Mice, Transgenic
Microinjections - methods
Mutation - genetics
Neural Stem Cells - drug effects
Neural Stem Cells - physiology
Neurobiology
Neurosciences
Physiological aspects
Rhombencephalon - cytology
Rhombencephalon - embryology
RNA
RNA, Messenger - pharmacology
Stem cells
technical-report
Time Factors
Tumor Suppressor Proteins - genetics
title A new approach to manipulate the fate of single neural stem cells in tissue
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20approach%20to%20manipulate%20the%20fate%20of%20single%20neural%20stem%20cells%20in%20tissue&rft.jtitle=Nature%20neuroscience&rft.au=Taverna,%20Elena&rft.date=2012-02-01&rft.volume=15&rft.issue=2&rft.spage=329&rft.epage=337&rft.pages=329-337&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.3008&rft_dat=%3Cgale_proqu%3EA280004853%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1015620984&rft_id=info:pmid/22179113&rft_galeid=A280004853&rfr_iscdi=true