Cellular transport pathways of polymer coated gold nanoparticles

Abstract The different transport pathways of 5-nm polymer-coated gold nanoparticles (Au NPs) crossing epithelial Caco-2 cell monolayers were explored. We found that the majority of cationic and neutral Au NPs depended heavily on endocytosis for cellular uptake and transport, and the anionic charged...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomedicine 2012, Vol.8 (1), p.8-11
Hauptverfasser: Lin, I-Chun, BSc, Liang, Mingtao, PhD, Liu, Tzu-Yu, MSc, Monteiro, Michael J., PhD, Toth, Istvan, PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 8
container_title Nanomedicine
container_volume 8
creator Lin, I-Chun, BSc
Liang, Mingtao, PhD
Liu, Tzu-Yu, MSc
Monteiro, Michael J., PhD
Toth, Istvan, PhD
description Abstract The different transport pathways of 5-nm polymer-coated gold nanoparticles (Au NPs) crossing epithelial Caco-2 cell monolayers were explored. We found that the majority of cationic and neutral Au NPs depended heavily on endocytosis for cellular uptake and transport, and the anionic charged nanoparticles trafficked preferentially through the tight junctions (i.e., a paracellular pathway). The current study demonstrates that the surface chemistry of neutral polymer coatings dictate the trafficking through Caco-2 cell monolayers; poly(ethylene glycol)-coated Au NPs traffic via an endocytosis pathway assisted by microtubules; poly(2,3-hydroxy-propylacrylamide)-coated Au NPs traffic via endocytosis but assisted by other nonmicrotubular pathways. The Au NPs coated with poly( N -isopropylacrylamide) (hydrophobic above the lower critical solution temperature of 32°C) traffic via either the microtubule-assisted endocytosis pathway or the paracellular pathway depending on the temperature. This knowledge will aid in the future of the design of nanoparticles as potential oral drug carriers. From the Clinical Editor The authors examined different transport pathways of polymer-coated gold nanoparticles to cross epithelial Caco-2 cells, concluding that surface chemistry of neutral polymer coatings dictates the trafficking through monolayers.
doi_str_mv 10.1016/j.nano.2011.09.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918071512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1549963411003716</els_id><sourcerecordid>918071512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-668c82b02e4d07abec01400133471339d68a3753d57cea19d53047b83b9c56653</originalsourceid><addsrcrecordid>eNp9UctuFDEQtBCIPOAHOERz47STbntelhACrfJAisQh4Wx57F7ijXc82DNE-_d4tEkOOXBx-1BVXV3F2CeEEgGb82056CGUHBBLkCVg9YYdY13JlWwq_vblL6ojdpLSFkC0API9O-IceIWyPWbf1uT97HUspqiHNIY4FaOe7h_1PhVhU4zB73cUCxP0RLb4Hbwtlq2jjpMzntIH9m6jfaKPT_OU_bq8uFtfr25-Xv1Yf79ZmRq6adU0nel4D5wqC63uyWS7AChE1eZH2qbToq2FrVtDGqWtBVRt34lemrppanHKPh90xxj-zJQmtXPJZPN6oDAnJbGDFmvkGckPSBNDSpE2aoxup-NeIaglOLVVywlqCU6BVNlJJp09yc_9juwL5TmpDPhyAFA-8q-jqJJxNBiyLpKZlA3u__pfX9GNd4Mz2j_QntI2zHHI8SlUiStQt0t1S3OIS2vYiH9385LP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918071512</pqid></control><display><type>article</type><title>Cellular transport pathways of polymer coated gold nanoparticles</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Lin, I-Chun, BSc ; Liang, Mingtao, PhD ; Liu, Tzu-Yu, MSc ; Monteiro, Michael J., PhD ; Toth, Istvan, PhD</creator><creatorcontrib>Lin, I-Chun, BSc ; Liang, Mingtao, PhD ; Liu, Tzu-Yu, MSc ; Monteiro, Michael J., PhD ; Toth, Istvan, PhD</creatorcontrib><description>Abstract The different transport pathways of 5-nm polymer-coated gold nanoparticles (Au NPs) crossing epithelial Caco-2 cell monolayers were explored. We found that the majority of cationic and neutral Au NPs depended heavily on endocytosis for cellular uptake and transport, and the anionic charged nanoparticles trafficked preferentially through the tight junctions (i.e., a paracellular pathway). The current study demonstrates that the surface chemistry of neutral polymer coatings dictate the trafficking through Caco-2 cell monolayers; poly(ethylene glycol)-coated Au NPs traffic via an endocytosis pathway assisted by microtubules; poly(2,3-hydroxy-propylacrylamide)-coated Au NPs traffic via endocytosis but assisted by other nonmicrotubular pathways. The Au NPs coated with poly( N -isopropylacrylamide) (hydrophobic above the lower critical solution temperature of 32°C) traffic via either the microtubule-assisted endocytosis pathway or the paracellular pathway depending on the temperature. This knowledge will aid in the future of the design of nanoparticles as potential oral drug carriers. From the Clinical Editor The authors examined different transport pathways of polymer-coated gold nanoparticles to cross epithelial Caco-2 cells, concluding that surface chemistry of neutral polymer coatings dictates the trafficking through monolayers.</description><identifier>ISSN: 1549-9634</identifier><identifier>EISSN: 1549-9642</identifier><identifier>DOI: 10.1016/j.nano.2011.09.014</identifier><identifier>PMID: 22024197</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acrylamides - chemistry ; Acrylic Resins - chemistry ; Animals ; Biological Transport ; Caco-2 Cells ; Cellular transport ; Drug Carriers - chemistry ; Endocytosis ; Endocytosis - physiology ; Gold - chemistry ; Gold nanoparticles ; Humans ; Hydrogen-Ion Concentration ; Internal Medicine ; Metal Nanoparticles - chemistry ; Microtubules - chemistry ; Particle Size ; Polyethylene Glycols - chemistry ; Polymer-coated nanoparticles ; Polymers - chemistry ; Surface Properties ; Temperature</subject><ispartof>Nanomedicine, 2012, Vol.8 (1), p.8-11</ispartof><rights>Elsevier Inc.</rights><rights>2012 Elsevier Inc.</rights><rights>2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-668c82b02e4d07abec01400133471339d68a3753d57cea19d53047b83b9c56653</citedby><cites>FETCH-LOGICAL-c508t-668c82b02e4d07abec01400133471339d68a3753d57cea19d53047b83b9c56653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1549963411003716$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22024197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, I-Chun, BSc</creatorcontrib><creatorcontrib>Liang, Mingtao, PhD</creatorcontrib><creatorcontrib>Liu, Tzu-Yu, MSc</creatorcontrib><creatorcontrib>Monteiro, Michael J., PhD</creatorcontrib><creatorcontrib>Toth, Istvan, PhD</creatorcontrib><title>Cellular transport pathways of polymer coated gold nanoparticles</title><title>Nanomedicine</title><addtitle>Nanomedicine</addtitle><description>Abstract The different transport pathways of 5-nm polymer-coated gold nanoparticles (Au NPs) crossing epithelial Caco-2 cell monolayers were explored. We found that the majority of cationic and neutral Au NPs depended heavily on endocytosis for cellular uptake and transport, and the anionic charged nanoparticles trafficked preferentially through the tight junctions (i.e., a paracellular pathway). The current study demonstrates that the surface chemistry of neutral polymer coatings dictate the trafficking through Caco-2 cell monolayers; poly(ethylene glycol)-coated Au NPs traffic via an endocytosis pathway assisted by microtubules; poly(2,3-hydroxy-propylacrylamide)-coated Au NPs traffic via endocytosis but assisted by other nonmicrotubular pathways. The Au NPs coated with poly( N -isopropylacrylamide) (hydrophobic above the lower critical solution temperature of 32°C) traffic via either the microtubule-assisted endocytosis pathway or the paracellular pathway depending on the temperature. This knowledge will aid in the future of the design of nanoparticles as potential oral drug carriers. From the Clinical Editor The authors examined different transport pathways of polymer-coated gold nanoparticles to cross epithelial Caco-2 cells, concluding that surface chemistry of neutral polymer coatings dictates the trafficking through monolayers.</description><subject>Acrylamides - chemistry</subject><subject>Acrylic Resins - chemistry</subject><subject>Animals</subject><subject>Biological Transport</subject><subject>Caco-2 Cells</subject><subject>Cellular transport</subject><subject>Drug Carriers - chemistry</subject><subject>Endocytosis</subject><subject>Endocytosis - physiology</subject><subject>Gold - chemistry</subject><subject>Gold nanoparticles</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Internal Medicine</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Microtubules - chemistry</subject><subject>Particle Size</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymer-coated nanoparticles</subject><subject>Polymers - chemistry</subject><subject>Surface Properties</subject><subject>Temperature</subject><issn>1549-9634</issn><issn>1549-9642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UctuFDEQtBCIPOAHOERz47STbntelhACrfJAisQh4Wx57F7ijXc82DNE-_d4tEkOOXBx-1BVXV3F2CeEEgGb82056CGUHBBLkCVg9YYdY13JlWwq_vblL6ojdpLSFkC0API9O-IceIWyPWbf1uT97HUspqiHNIY4FaOe7h_1PhVhU4zB73cUCxP0RLb4Hbwtlq2jjpMzntIH9m6jfaKPT_OU_bq8uFtfr25-Xv1Yf79ZmRq6adU0nel4D5wqC63uyWS7AChE1eZH2qbToq2FrVtDGqWtBVRt34lemrppanHKPh90xxj-zJQmtXPJZPN6oDAnJbGDFmvkGckPSBNDSpE2aoxup-NeIaglOLVVywlqCU6BVNlJJp09yc_9juwL5TmpDPhyAFA-8q-jqJJxNBiyLpKZlA3u__pfX9GNd4Mz2j_QntI2zHHI8SlUiStQt0t1S3OIS2vYiH9385LP</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Lin, I-Chun, BSc</creator><creator>Liang, Mingtao, PhD</creator><creator>Liu, Tzu-Yu, MSc</creator><creator>Monteiro, Michael J., PhD</creator><creator>Toth, Istvan, PhD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>2012</creationdate><title>Cellular transport pathways of polymer coated gold nanoparticles</title><author>Lin, I-Chun, BSc ; Liang, Mingtao, PhD ; Liu, Tzu-Yu, MSc ; Monteiro, Michael J., PhD ; Toth, Istvan, PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-668c82b02e4d07abec01400133471339d68a3753d57cea19d53047b83b9c56653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acrylamides - chemistry</topic><topic>Acrylic Resins - chemistry</topic><topic>Animals</topic><topic>Biological Transport</topic><topic>Caco-2 Cells</topic><topic>Cellular transport</topic><topic>Drug Carriers - chemistry</topic><topic>Endocytosis</topic><topic>Endocytosis - physiology</topic><topic>Gold - chemistry</topic><topic>Gold nanoparticles</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Internal Medicine</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Microtubules - chemistry</topic><topic>Particle Size</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymer-coated nanoparticles</topic><topic>Polymers - chemistry</topic><topic>Surface Properties</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, I-Chun, BSc</creatorcontrib><creatorcontrib>Liang, Mingtao, PhD</creatorcontrib><creatorcontrib>Liu, Tzu-Yu, MSc</creatorcontrib><creatorcontrib>Monteiro, Michael J., PhD</creatorcontrib><creatorcontrib>Toth, Istvan, PhD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nanomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, I-Chun, BSc</au><au>Liang, Mingtao, PhD</au><au>Liu, Tzu-Yu, MSc</au><au>Monteiro, Michael J., PhD</au><au>Toth, Istvan, PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular transport pathways of polymer coated gold nanoparticles</atitle><jtitle>Nanomedicine</jtitle><addtitle>Nanomedicine</addtitle><date>2012</date><risdate>2012</risdate><volume>8</volume><issue>1</issue><spage>8</spage><epage>11</epage><pages>8-11</pages><issn>1549-9634</issn><eissn>1549-9642</eissn><abstract>Abstract The different transport pathways of 5-nm polymer-coated gold nanoparticles (Au NPs) crossing epithelial Caco-2 cell monolayers were explored. We found that the majority of cationic and neutral Au NPs depended heavily on endocytosis for cellular uptake and transport, and the anionic charged nanoparticles trafficked preferentially through the tight junctions (i.e., a paracellular pathway). The current study demonstrates that the surface chemistry of neutral polymer coatings dictate the trafficking through Caco-2 cell monolayers; poly(ethylene glycol)-coated Au NPs traffic via an endocytosis pathway assisted by microtubules; poly(2,3-hydroxy-propylacrylamide)-coated Au NPs traffic via endocytosis but assisted by other nonmicrotubular pathways. The Au NPs coated with poly( N -isopropylacrylamide) (hydrophobic above the lower critical solution temperature of 32°C) traffic via either the microtubule-assisted endocytosis pathway or the paracellular pathway depending on the temperature. This knowledge will aid in the future of the design of nanoparticles as potential oral drug carriers. From the Clinical Editor The authors examined different transport pathways of polymer-coated gold nanoparticles to cross epithelial Caco-2 cells, concluding that surface chemistry of neutral polymer coatings dictates the trafficking through monolayers.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22024197</pmid><doi>10.1016/j.nano.2011.09.014</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-9634
ispartof Nanomedicine, 2012, Vol.8 (1), p.8-11
issn 1549-9634
1549-9642
language eng
recordid cdi_proquest_miscellaneous_918071512
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Acrylamides - chemistry
Acrylic Resins - chemistry
Animals
Biological Transport
Caco-2 Cells
Cellular transport
Drug Carriers - chemistry
Endocytosis
Endocytosis - physiology
Gold - chemistry
Gold nanoparticles
Humans
Hydrogen-Ion Concentration
Internal Medicine
Metal Nanoparticles - chemistry
Microtubules - chemistry
Particle Size
Polyethylene Glycols - chemistry
Polymer-coated nanoparticles
Polymers - chemistry
Surface Properties
Temperature
title Cellular transport pathways of polymer coated gold nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20transport%20pathways%20of%20polymer%20coated%20gold%20nanoparticles&rft.jtitle=Nanomedicine&rft.au=Lin,%20I-Chun,%20BSc&rft.date=2012&rft.volume=8&rft.issue=1&rft.spage=8&rft.epage=11&rft.pages=8-11&rft.issn=1549-9634&rft.eissn=1549-9642&rft_id=info:doi/10.1016/j.nano.2011.09.014&rft_dat=%3Cproquest_cross%3E918071512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918071512&rft_id=info:pmid/22024197&rft_els_id=S1549963411003716&rfr_iscdi=true