Cell patterning using molecular vapor deposition of self-assembled monolayers and lift-off technique
This paper reports a precise, live cell-patterning method by means of patterning a silicon or glass substrate with alternating cytophilic and cytophobic self-assembled monolayers (SAMs) deposited via molecular vapor deposition. Specifically, a stack of hydrophobic heptadecafluoro-1,1,2,2-tetrahydrod...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2011-03, Vol.7 (3), p.1094-1103 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1103 |
---|---|
container_issue | 3 |
container_start_page | 1094 |
container_title | Acta biomaterialia |
container_volume | 7 |
creator | Jing, Gaoshan Wang, Yu Zhou, Tianyi Perry, Susan F. Grimes, Michael T. Tatic-Lucic, Svetlana |
description | This paper reports a precise, live cell-patterning method by means of patterning a silicon or glass substrate with alternating cytophilic and cytophobic self-assembled monolayers (SAMs) deposited via molecular vapor deposition. Specifically, a stack of hydrophobic heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane SAMs and a silicon oxide adhesion layer were patterned on the substrate surface, and a hydrophilic SAM derived from 3-trimethoxysilyl propyldiethylenetriamine was coated on the remaining non-treated areas on the substrate surface to promote cell growth. The primary characteristics of the reported method include: (i) single-cell resolution; (ii) easy alignment of the patterns with the pre-existing patterns on the substrate; (iii) easy formation of nanoscale patterns (depending on the exposure equipment); (iv) long shelf life of the substrate pattern prior to cell culturing; (v) compatibility with conventional, inverted, optical microscopes for simple visualization of patterns formed on a glass wafer; and (vi) the ability to support patterned cell (osteoblast) networks for at least 2weeks. Here, we describe the deposition technique and the characterization of the deposited layers, as well as the application of this method in the fabrication of multielectrode arrays supporting patterned neuronal networks. |
doi_str_mv | 10.1016/j.actbio.2010.09.040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918071087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706110004502</els_id><sourcerecordid>848684835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-d94169a8b979708246fc224b3d1fd5b12bf9c78ee0d31ddf0c00ae48750863c73</originalsourceid><addsrcrecordid>eNqFkU2P1SAUhonROOPoPzDanateD5QW2JiYm_EjmcSFzppQOIzctKUCnWT-vdx0dKkL4IQ85z0fLyGvKRwo0OH96WBsGUM8MKhfoA7A4Qm5pFLIVvSDfFpjwVkrYKAX5EXOJ4BOUiafkwsGquM9Z5fEHXGamtWUgmkJy12z5fM9xwntNpnU3Js1psbhGnMoIS5N9E3GybcmZ5zHCV2FlziZB0y5MYtrpuBLG71vCtqfS_i14UvyzJsp46vH94rcfrr-cfzS3nz7_PX48aa1XHaldYrTQRk5KqEESMYHbxnjY-eod_1I2eiVFRIRXEed82ABDHIpepBDZ0V3Rd7tumuKtWwueg7Z1gHNgnHLWlEJgoL8Pym5HOrp-krynbQp5pzQ6zWF2aQHTUGfjdAnvRuhz0ZoULoaUdPePBbYxhnd36Q_m6_A2x3wJmpzl0LWt9-rQg9VRSg4Ex92AuvK7gMmnW3AxaILCW3RLoZ_9_Ab7xWlhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>848684835</pqid></control><display><type>article</type><title>Cell patterning using molecular vapor deposition of self-assembled monolayers and lift-off technique</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Jing, Gaoshan ; Wang, Yu ; Zhou, Tianyi ; Perry, Susan F. ; Grimes, Michael T. ; Tatic-Lucic, Svetlana</creator><creatorcontrib>Jing, Gaoshan ; Wang, Yu ; Zhou, Tianyi ; Perry, Susan F. ; Grimes, Michael T. ; Tatic-Lucic, Svetlana</creatorcontrib><description>This paper reports a precise, live cell-patterning method by means of patterning a silicon or glass substrate with alternating cytophilic and cytophobic self-assembled monolayers (SAMs) deposited via molecular vapor deposition. Specifically, a stack of hydrophobic heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane SAMs and a silicon oxide adhesion layer were patterned on the substrate surface, and a hydrophilic SAM derived from 3-trimethoxysilyl propyldiethylenetriamine was coated on the remaining non-treated areas on the substrate surface to promote cell growth. The primary characteristics of the reported method include: (i) single-cell resolution; (ii) easy alignment of the patterns with the pre-existing patterns on the substrate; (iii) easy formation of nanoscale patterns (depending on the exposure equipment); (iv) long shelf life of the substrate pattern prior to cell culturing; (v) compatibility with conventional, inverted, optical microscopes for simple visualization of patterns formed on a glass wafer; and (vi) the ability to support patterned cell (osteoblast) networks for at least 2weeks. Here, we describe the deposition technique and the characterization of the deposited layers, as well as the application of this method in the fabrication of multielectrode arrays supporting patterned neuronal networks.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2010.09.040</identifier><identifier>PMID: 20934542</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>adhesion ; Animals ; Biosensors ; cell culture ; cell growth ; Cell Line, Transformed ; glass ; hydrophilicity ; hydrophobicity ; Mice ; microscopes ; Microscopy, Electron, Scanning ; Microscopy, Fluorescence ; Molecular vapor deposition (MVD) ; Multi-electrode arrays (MEAs) ; neural networks ; Osteoblasts - cytology ; Self-assembled monolayers (SAMs) ; shelf life ; silicon ; Single cell patterning ; vapors</subject><ispartof>Acta biomaterialia, 2011-03, Vol.7 (3), p.1094-1103</ispartof><rights>2010 Acta Materialia Inc.</rights><rights>Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-d94169a8b979708246fc224b3d1fd5b12bf9c78ee0d31ddf0c00ae48750863c73</citedby><cites>FETCH-LOGICAL-c483t-d94169a8b979708246fc224b3d1fd5b12bf9c78ee0d31ddf0c00ae48750863c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2010.09.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20934542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jing, Gaoshan</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhou, Tianyi</creatorcontrib><creatorcontrib>Perry, Susan F.</creatorcontrib><creatorcontrib>Grimes, Michael T.</creatorcontrib><creatorcontrib>Tatic-Lucic, Svetlana</creatorcontrib><title>Cell patterning using molecular vapor deposition of self-assembled monolayers and lift-off technique</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>This paper reports a precise, live cell-patterning method by means of patterning a silicon or glass substrate with alternating cytophilic and cytophobic self-assembled monolayers (SAMs) deposited via molecular vapor deposition. Specifically, a stack of hydrophobic heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane SAMs and a silicon oxide adhesion layer were patterned on the substrate surface, and a hydrophilic SAM derived from 3-trimethoxysilyl propyldiethylenetriamine was coated on the remaining non-treated areas on the substrate surface to promote cell growth. The primary characteristics of the reported method include: (i) single-cell resolution; (ii) easy alignment of the patterns with the pre-existing patterns on the substrate; (iii) easy formation of nanoscale patterns (depending on the exposure equipment); (iv) long shelf life of the substrate pattern prior to cell culturing; (v) compatibility with conventional, inverted, optical microscopes for simple visualization of patterns formed on a glass wafer; and (vi) the ability to support patterned cell (osteoblast) networks for at least 2weeks. Here, we describe the deposition technique and the characterization of the deposited layers, as well as the application of this method in the fabrication of multielectrode arrays supporting patterned neuronal networks.</description><subject>adhesion</subject><subject>Animals</subject><subject>Biosensors</subject><subject>cell culture</subject><subject>cell growth</subject><subject>Cell Line, Transformed</subject><subject>glass</subject><subject>hydrophilicity</subject><subject>hydrophobicity</subject><subject>Mice</subject><subject>microscopes</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular vapor deposition (MVD)</subject><subject>Multi-electrode arrays (MEAs)</subject><subject>neural networks</subject><subject>Osteoblasts - cytology</subject><subject>Self-assembled monolayers (SAMs)</subject><subject>shelf life</subject><subject>silicon</subject><subject>Single cell patterning</subject><subject>vapors</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2P1SAUhonROOPoPzDanateD5QW2JiYm_EjmcSFzppQOIzctKUCnWT-vdx0dKkL4IQ85z0fLyGvKRwo0OH96WBsGUM8MKhfoA7A4Qm5pFLIVvSDfFpjwVkrYKAX5EXOJ4BOUiafkwsGquM9Z5fEHXGamtWUgmkJy12z5fM9xwntNpnU3Js1psbhGnMoIS5N9E3GybcmZ5zHCV2FlziZB0y5MYtrpuBLG71vCtqfS_i14UvyzJsp46vH94rcfrr-cfzS3nz7_PX48aa1XHaldYrTQRk5KqEESMYHbxnjY-eod_1I2eiVFRIRXEed82ABDHIpepBDZ0V3Rd7tumuKtWwueg7Z1gHNgnHLWlEJgoL8Pym5HOrp-krynbQp5pzQ6zWF2aQHTUGfjdAnvRuhz0ZoULoaUdPePBbYxhnd36Q_m6_A2x3wJmpzl0LWt9-rQg9VRSg4Ex92AuvK7gMmnW3AxaILCW3RLoZ_9_Ab7xWlhg</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Jing, Gaoshan</creator><creator>Wang, Yu</creator><creator>Zhou, Tianyi</creator><creator>Perry, Susan F.</creator><creator>Grimes, Michael T.</creator><creator>Tatic-Lucic, Svetlana</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110301</creationdate><title>Cell patterning using molecular vapor deposition of self-assembled monolayers and lift-off technique</title><author>Jing, Gaoshan ; Wang, Yu ; Zhou, Tianyi ; Perry, Susan F. ; Grimes, Michael T. ; Tatic-Lucic, Svetlana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-d94169a8b979708246fc224b3d1fd5b12bf9c78ee0d31ddf0c00ae48750863c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>adhesion</topic><topic>Animals</topic><topic>Biosensors</topic><topic>cell culture</topic><topic>cell growth</topic><topic>Cell Line, Transformed</topic><topic>glass</topic><topic>hydrophilicity</topic><topic>hydrophobicity</topic><topic>Mice</topic><topic>microscopes</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular vapor deposition (MVD)</topic><topic>Multi-electrode arrays (MEAs)</topic><topic>neural networks</topic><topic>Osteoblasts - cytology</topic><topic>Self-assembled monolayers (SAMs)</topic><topic>shelf life</topic><topic>silicon</topic><topic>Single cell patterning</topic><topic>vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, Gaoshan</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhou, Tianyi</creatorcontrib><creatorcontrib>Perry, Susan F.</creatorcontrib><creatorcontrib>Grimes, Michael T.</creatorcontrib><creatorcontrib>Tatic-Lucic, Svetlana</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Gaoshan</au><au>Wang, Yu</au><au>Zhou, Tianyi</au><au>Perry, Susan F.</au><au>Grimes, Michael T.</au><au>Tatic-Lucic, Svetlana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell patterning using molecular vapor deposition of self-assembled monolayers and lift-off technique</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>7</volume><issue>3</issue><spage>1094</spage><epage>1103</epage><pages>1094-1103</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>This paper reports a precise, live cell-patterning method by means of patterning a silicon or glass substrate with alternating cytophilic and cytophobic self-assembled monolayers (SAMs) deposited via molecular vapor deposition. Specifically, a stack of hydrophobic heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane SAMs and a silicon oxide adhesion layer were patterned on the substrate surface, and a hydrophilic SAM derived from 3-trimethoxysilyl propyldiethylenetriamine was coated on the remaining non-treated areas on the substrate surface to promote cell growth. The primary characteristics of the reported method include: (i) single-cell resolution; (ii) easy alignment of the patterns with the pre-existing patterns on the substrate; (iii) easy formation of nanoscale patterns (depending on the exposure equipment); (iv) long shelf life of the substrate pattern prior to cell culturing; (v) compatibility with conventional, inverted, optical microscopes for simple visualization of patterns formed on a glass wafer; and (vi) the ability to support patterned cell (osteoblast) networks for at least 2weeks. Here, we describe the deposition technique and the characterization of the deposited layers, as well as the application of this method in the fabrication of multielectrode arrays supporting patterned neuronal networks.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>20934542</pmid><doi>10.1016/j.actbio.2010.09.040</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2011-03, Vol.7 (3), p.1094-1103 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_918071087 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | adhesion Animals Biosensors cell culture cell growth Cell Line, Transformed glass hydrophilicity hydrophobicity Mice microscopes Microscopy, Electron, Scanning Microscopy, Fluorescence Molecular vapor deposition (MVD) Multi-electrode arrays (MEAs) neural networks Osteoblasts - cytology Self-assembled monolayers (SAMs) shelf life silicon Single cell patterning vapors |
title | Cell patterning using molecular vapor deposition of self-assembled monolayers and lift-off technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20patterning%20using%20molecular%20vapor%20deposition%20of%20self-assembled%20monolayers%20and%20lift-off%20technique&rft.jtitle=Acta%20biomaterialia&rft.au=Jing,%20Gaoshan&rft.date=2011-03-01&rft.volume=7&rft.issue=3&rft.spage=1094&rft.epage=1103&rft.pages=1094-1103&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2010.09.040&rft_dat=%3Cproquest_cross%3E848684835%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=848684835&rft_id=info:pmid/20934542&rft_els_id=S1742706110004502&rfr_iscdi=true |