Cell patterning using molecular vapor deposition of self-assembled monolayers and lift-off technique

This paper reports a precise, live cell-patterning method by means of patterning a silicon or glass substrate with alternating cytophilic and cytophobic self-assembled monolayers (SAMs) deposited via molecular vapor deposition. Specifically, a stack of hydrophobic heptadecafluoro-1,1,2,2-tetrahydrod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2011-03, Vol.7 (3), p.1094-1103
Hauptverfasser: Jing, Gaoshan, Wang, Yu, Zhou, Tianyi, Perry, Susan F., Grimes, Michael T., Tatic-Lucic, Svetlana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1103
container_issue 3
container_start_page 1094
container_title Acta biomaterialia
container_volume 7
creator Jing, Gaoshan
Wang, Yu
Zhou, Tianyi
Perry, Susan F.
Grimes, Michael T.
Tatic-Lucic, Svetlana
description This paper reports a precise, live cell-patterning method by means of patterning a silicon or glass substrate with alternating cytophilic and cytophobic self-assembled monolayers (SAMs) deposited via molecular vapor deposition. Specifically, a stack of hydrophobic heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane SAMs and a silicon oxide adhesion layer were patterned on the substrate surface, and a hydrophilic SAM derived from 3-trimethoxysilyl propyldiethylenetriamine was coated on the remaining non-treated areas on the substrate surface to promote cell growth. The primary characteristics of the reported method include: (i) single-cell resolution; (ii) easy alignment of the patterns with the pre-existing patterns on the substrate; (iii) easy formation of nanoscale patterns (depending on the exposure equipment); (iv) long shelf life of the substrate pattern prior to cell culturing; (v) compatibility with conventional, inverted, optical microscopes for simple visualization of patterns formed on a glass wafer; and (vi) the ability to support patterned cell (osteoblast) networks for at least 2weeks. Here, we describe the deposition technique and the characterization of the deposited layers, as well as the application of this method in the fabrication of multielectrode arrays supporting patterned neuronal networks.
doi_str_mv 10.1016/j.actbio.2010.09.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918071087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706110004502</els_id><sourcerecordid>848684835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-d94169a8b979708246fc224b3d1fd5b12bf9c78ee0d31ddf0c00ae48750863c73</originalsourceid><addsrcrecordid>eNqFkU2P1SAUhonROOPoPzDanateD5QW2JiYm_EjmcSFzppQOIzctKUCnWT-vdx0dKkL4IQ85z0fLyGvKRwo0OH96WBsGUM8MKhfoA7A4Qm5pFLIVvSDfFpjwVkrYKAX5EXOJ4BOUiafkwsGquM9Z5fEHXGamtWUgmkJy12z5fM9xwntNpnU3Js1psbhGnMoIS5N9E3GybcmZ5zHCV2FlziZB0y5MYtrpuBLG71vCtqfS_i14UvyzJsp46vH94rcfrr-cfzS3nz7_PX48aa1XHaldYrTQRk5KqEESMYHbxnjY-eod_1I2eiVFRIRXEed82ABDHIpepBDZ0V3Rd7tumuKtWwueg7Z1gHNgnHLWlEJgoL8Pym5HOrp-krynbQp5pzQ6zWF2aQHTUGfjdAnvRuhz0ZoULoaUdPePBbYxhnd36Q_m6_A2x3wJmpzl0LWt9-rQg9VRSg4Ex92AuvK7gMmnW3AxaILCW3RLoZ_9_Ab7xWlhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>848684835</pqid></control><display><type>article</type><title>Cell patterning using molecular vapor deposition of self-assembled monolayers and lift-off technique</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Jing, Gaoshan ; Wang, Yu ; Zhou, Tianyi ; Perry, Susan F. ; Grimes, Michael T. ; Tatic-Lucic, Svetlana</creator><creatorcontrib>Jing, Gaoshan ; Wang, Yu ; Zhou, Tianyi ; Perry, Susan F. ; Grimes, Michael T. ; Tatic-Lucic, Svetlana</creatorcontrib><description>This paper reports a precise, live cell-patterning method by means of patterning a silicon or glass substrate with alternating cytophilic and cytophobic self-assembled monolayers (SAMs) deposited via molecular vapor deposition. Specifically, a stack of hydrophobic heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane SAMs and a silicon oxide adhesion layer were patterned on the substrate surface, and a hydrophilic SAM derived from 3-trimethoxysilyl propyldiethylenetriamine was coated on the remaining non-treated areas on the substrate surface to promote cell growth. The primary characteristics of the reported method include: (i) single-cell resolution; (ii) easy alignment of the patterns with the pre-existing patterns on the substrate; (iii) easy formation of nanoscale patterns (depending on the exposure equipment); (iv) long shelf life of the substrate pattern prior to cell culturing; (v) compatibility with conventional, inverted, optical microscopes for simple visualization of patterns formed on a glass wafer; and (vi) the ability to support patterned cell (osteoblast) networks for at least 2weeks. Here, we describe the deposition technique and the characterization of the deposited layers, as well as the application of this method in the fabrication of multielectrode arrays supporting patterned neuronal networks.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2010.09.040</identifier><identifier>PMID: 20934542</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>adhesion ; Animals ; Biosensors ; cell culture ; cell growth ; Cell Line, Transformed ; glass ; hydrophilicity ; hydrophobicity ; Mice ; microscopes ; Microscopy, Electron, Scanning ; Microscopy, Fluorescence ; Molecular vapor deposition (MVD) ; Multi-electrode arrays (MEAs) ; neural networks ; Osteoblasts - cytology ; Self-assembled monolayers (SAMs) ; shelf life ; silicon ; Single cell patterning ; vapors</subject><ispartof>Acta biomaterialia, 2011-03, Vol.7 (3), p.1094-1103</ispartof><rights>2010 Acta Materialia Inc.</rights><rights>Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-d94169a8b979708246fc224b3d1fd5b12bf9c78ee0d31ddf0c00ae48750863c73</citedby><cites>FETCH-LOGICAL-c483t-d94169a8b979708246fc224b3d1fd5b12bf9c78ee0d31ddf0c00ae48750863c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2010.09.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20934542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jing, Gaoshan</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhou, Tianyi</creatorcontrib><creatorcontrib>Perry, Susan F.</creatorcontrib><creatorcontrib>Grimes, Michael T.</creatorcontrib><creatorcontrib>Tatic-Lucic, Svetlana</creatorcontrib><title>Cell patterning using molecular vapor deposition of self-assembled monolayers and lift-off technique</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>This paper reports a precise, live cell-patterning method by means of patterning a silicon or glass substrate with alternating cytophilic and cytophobic self-assembled monolayers (SAMs) deposited via molecular vapor deposition. Specifically, a stack of hydrophobic heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane SAMs and a silicon oxide adhesion layer were patterned on the substrate surface, and a hydrophilic SAM derived from 3-trimethoxysilyl propyldiethylenetriamine was coated on the remaining non-treated areas on the substrate surface to promote cell growth. The primary characteristics of the reported method include: (i) single-cell resolution; (ii) easy alignment of the patterns with the pre-existing patterns on the substrate; (iii) easy formation of nanoscale patterns (depending on the exposure equipment); (iv) long shelf life of the substrate pattern prior to cell culturing; (v) compatibility with conventional, inverted, optical microscopes for simple visualization of patterns formed on a glass wafer; and (vi) the ability to support patterned cell (osteoblast) networks for at least 2weeks. Here, we describe the deposition technique and the characterization of the deposited layers, as well as the application of this method in the fabrication of multielectrode arrays supporting patterned neuronal networks.</description><subject>adhesion</subject><subject>Animals</subject><subject>Biosensors</subject><subject>cell culture</subject><subject>cell growth</subject><subject>Cell Line, Transformed</subject><subject>glass</subject><subject>hydrophilicity</subject><subject>hydrophobicity</subject><subject>Mice</subject><subject>microscopes</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular vapor deposition (MVD)</subject><subject>Multi-electrode arrays (MEAs)</subject><subject>neural networks</subject><subject>Osteoblasts - cytology</subject><subject>Self-assembled monolayers (SAMs)</subject><subject>shelf life</subject><subject>silicon</subject><subject>Single cell patterning</subject><subject>vapors</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2P1SAUhonROOPoPzDanateD5QW2JiYm_EjmcSFzppQOIzctKUCnWT-vdx0dKkL4IQ85z0fLyGvKRwo0OH96WBsGUM8MKhfoA7A4Qm5pFLIVvSDfFpjwVkrYKAX5EXOJ4BOUiafkwsGquM9Z5fEHXGamtWUgmkJy12z5fM9xwntNpnU3Js1psbhGnMoIS5N9E3GybcmZ5zHCV2FlziZB0y5MYtrpuBLG71vCtqfS_i14UvyzJsp46vH94rcfrr-cfzS3nz7_PX48aa1XHaldYrTQRk5KqEESMYHbxnjY-eod_1I2eiVFRIRXEed82ABDHIpepBDZ0V3Rd7tumuKtWwueg7Z1gHNgnHLWlEJgoL8Pym5HOrp-krynbQp5pzQ6zWF2aQHTUGfjdAnvRuhz0ZoULoaUdPePBbYxhnd36Q_m6_A2x3wJmpzl0LWt9-rQg9VRSg4Ex92AuvK7gMmnW3AxaILCW3RLoZ_9_Ab7xWlhg</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Jing, Gaoshan</creator><creator>Wang, Yu</creator><creator>Zhou, Tianyi</creator><creator>Perry, Susan F.</creator><creator>Grimes, Michael T.</creator><creator>Tatic-Lucic, Svetlana</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110301</creationdate><title>Cell patterning using molecular vapor deposition of self-assembled monolayers and lift-off technique</title><author>Jing, Gaoshan ; Wang, Yu ; Zhou, Tianyi ; Perry, Susan F. ; Grimes, Michael T. ; Tatic-Lucic, Svetlana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-d94169a8b979708246fc224b3d1fd5b12bf9c78ee0d31ddf0c00ae48750863c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>adhesion</topic><topic>Animals</topic><topic>Biosensors</topic><topic>cell culture</topic><topic>cell growth</topic><topic>Cell Line, Transformed</topic><topic>glass</topic><topic>hydrophilicity</topic><topic>hydrophobicity</topic><topic>Mice</topic><topic>microscopes</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular vapor deposition (MVD)</topic><topic>Multi-electrode arrays (MEAs)</topic><topic>neural networks</topic><topic>Osteoblasts - cytology</topic><topic>Self-assembled monolayers (SAMs)</topic><topic>shelf life</topic><topic>silicon</topic><topic>Single cell patterning</topic><topic>vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, Gaoshan</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhou, Tianyi</creatorcontrib><creatorcontrib>Perry, Susan F.</creatorcontrib><creatorcontrib>Grimes, Michael T.</creatorcontrib><creatorcontrib>Tatic-Lucic, Svetlana</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Gaoshan</au><au>Wang, Yu</au><au>Zhou, Tianyi</au><au>Perry, Susan F.</au><au>Grimes, Michael T.</au><au>Tatic-Lucic, Svetlana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell patterning using molecular vapor deposition of self-assembled monolayers and lift-off technique</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>7</volume><issue>3</issue><spage>1094</spage><epage>1103</epage><pages>1094-1103</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>This paper reports a precise, live cell-patterning method by means of patterning a silicon or glass substrate with alternating cytophilic and cytophobic self-assembled monolayers (SAMs) deposited via molecular vapor deposition. Specifically, a stack of hydrophobic heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane SAMs and a silicon oxide adhesion layer were patterned on the substrate surface, and a hydrophilic SAM derived from 3-trimethoxysilyl propyldiethylenetriamine was coated on the remaining non-treated areas on the substrate surface to promote cell growth. The primary characteristics of the reported method include: (i) single-cell resolution; (ii) easy alignment of the patterns with the pre-existing patterns on the substrate; (iii) easy formation of nanoscale patterns (depending on the exposure equipment); (iv) long shelf life of the substrate pattern prior to cell culturing; (v) compatibility with conventional, inverted, optical microscopes for simple visualization of patterns formed on a glass wafer; and (vi) the ability to support patterned cell (osteoblast) networks for at least 2weeks. Here, we describe the deposition technique and the characterization of the deposited layers, as well as the application of this method in the fabrication of multielectrode arrays supporting patterned neuronal networks.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>20934542</pmid><doi>10.1016/j.actbio.2010.09.040</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2011-03, Vol.7 (3), p.1094-1103
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_918071087
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects adhesion
Animals
Biosensors
cell culture
cell growth
Cell Line, Transformed
glass
hydrophilicity
hydrophobicity
Mice
microscopes
Microscopy, Electron, Scanning
Microscopy, Fluorescence
Molecular vapor deposition (MVD)
Multi-electrode arrays (MEAs)
neural networks
Osteoblasts - cytology
Self-assembled monolayers (SAMs)
shelf life
silicon
Single cell patterning
vapors
title Cell patterning using molecular vapor deposition of self-assembled monolayers and lift-off technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20patterning%20using%20molecular%20vapor%20deposition%20of%20self-assembled%20monolayers%20and%20lift-off%20technique&rft.jtitle=Acta%20biomaterialia&rft.au=Jing,%20Gaoshan&rft.date=2011-03-01&rft.volume=7&rft.issue=3&rft.spage=1094&rft.epage=1103&rft.pages=1094-1103&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2010.09.040&rft_dat=%3Cproquest_cross%3E848684835%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=848684835&rft_id=info:pmid/20934542&rft_els_id=S1742706110004502&rfr_iscdi=true