High-strength nanograined and translucent hydroxyapatite monoliths via continuous hydrothermal synthesis and optimized spark plasma sintering
The synthesis of high-strength, completely dense nanograined hydroxyapatite (bioceramic) monoliths is a challenge as high temperatures or long sintering times are often required. In this study, nanorods of hydroxyapatite (HA) and calcium-deficient HA (made using a novel continuous hydrothermal flow...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2011-02, Vol.7 (2), p.791-799 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 799 |
---|---|
container_issue | 2 |
container_start_page | 791 |
container_title | Acta biomaterialia |
container_volume | 7 |
creator | Chaudhry, Aqif A. Yan, Haixue Gong, Kenan Inam, Fawad Viola, Giuseppe Reece, Mike J. Goodall, Josephine B.M. ur Rehman, Ihtesham McNeil-Watson, Fraser K. Corbett, Jason C.W. Knowles, Jonathan C. Darr, Jawwad A. |
description | The synthesis of high-strength, completely dense nanograined hydroxyapatite (bioceramic) monoliths is a challenge as high temperatures or long sintering times are often required. In this study, nanorods of hydroxyapatite (HA) and calcium-deficient HA (made using a novel continuous hydrothermal flow synthesis method) were consolidated using spark plasma sintering (SPS) up to full theoretical density in ∼5
min at temperatures up to 1000
°C. After significant optimization of the SPS heating and loading cycles, fully dense HA discs were obtained which were translucent, suggesting very high densities. Significantly high three-point flexural strength values for such materials (up to 158
MPa) were measured. Freeze-fracturing of disks followed by scanning electron microscopy investigation revealed selected samples possessed sub-200
nm sized grains and no visible pores, suggesting they were fully dense. |
doi_str_mv | 10.1016/j.actbio.2010.09.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918069625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706110004393</els_id><sourcerecordid>918069625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-8dd9735fee8b9b1c2b334799a477386cbe4c6913b91faadba4890762ea1799c93</originalsourceid><addsrcrecordid>eNqFkc9u1DAQhyMEoqXwBghy45TFf5LYviChCihSJQ7QszVxJhsviR1sp-ryDrwz3qZwhJNH1jefZ_wripeU7Cih7dvDDkzqrN8xkq-I2hGmHhXnVApZiaaVj3MtalYJ0tKz4lmMB0K4pEw-Lc4YkZJL3pwXv67sfqxiCuj2aSwdOL8PYB32Jbi-TAFcnFaDLpXjsQ_-7ggLJJuwnL3zk01jLG8tlMa7ZN3q17hxacQww1TGo8tltPFe55dkZ_szy-MC4Xu5TBBnKKN1CYN1--fFkwGmiC8ezovi5uOHb5dX1fWXT58v319XppY8VbLvleDNgCg71VHDOs5roRTUQnDZmg5r0yrKO0UHgL6DWioiWoZAM2UUvyjebN4l-B8rxqRnGw1OEzjMK2hFJWlVy5r_kpIx3jLOTs56I03wMQYc9BLsDOGoKdGnxPRBb4npU2KaKE3u2149PLB2M_Z_m_5ElIHXGzCA17APNuqbr9nQkGwRkpNMvNsIzF92azHoaCw6g70NaJLuvf33DL8BCKy3Jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822362329</pqid></control><display><type>article</type><title>High-strength nanograined and translucent hydroxyapatite monoliths via continuous hydrothermal synthesis and optimized spark plasma sintering</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chaudhry, Aqif A. ; Yan, Haixue ; Gong, Kenan ; Inam, Fawad ; Viola, Giuseppe ; Reece, Mike J. ; Goodall, Josephine B.M. ; ur Rehman, Ihtesham ; McNeil-Watson, Fraser K. ; Corbett, Jason C.W. ; Knowles, Jonathan C. ; Darr, Jawwad A.</creator><creatorcontrib>Chaudhry, Aqif A. ; Yan, Haixue ; Gong, Kenan ; Inam, Fawad ; Viola, Giuseppe ; Reece, Mike J. ; Goodall, Josephine B.M. ; ur Rehman, Ihtesham ; McNeil-Watson, Fraser K. ; Corbett, Jason C.W. ; Knowles, Jonathan C. ; Darr, Jawwad A.</creatorcontrib><description>The synthesis of high-strength, completely dense nanograined hydroxyapatite (bioceramic) monoliths is a challenge as high temperatures or long sintering times are often required. In this study, nanorods of hydroxyapatite (HA) and calcium-deficient HA (made using a novel continuous hydrothermal flow synthesis method) were consolidated using spark plasma sintering (SPS) up to full theoretical density in ∼5
min at temperatures up to 1000
°C. After significant optimization of the SPS heating and loading cycles, fully dense HA discs were obtained which were translucent, suggesting very high densities. Significantly high three-point flexural strength values for such materials (up to 158
MPa) were measured. Freeze-fracturing of disks followed by scanning electron microscopy investigation revealed selected samples possessed sub-200
nm sized grains and no visible pores, suggesting they were fully dense.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2010.09.029</identifier><identifier>PMID: 20883835</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>CHFS ; grains ; heat ; Hydroxyapatite ; Hydroxyapatites - chemistry ; Light ; Materials Testing - methods ; Nanobioceramics ; Nanorods ; Nanotubes - chemistry ; Nanotubes - ultrastructure ; Particle Size ; Plasma Gases - chemistry ; scanning electron microscopy ; Scattering, Radiation ; SPS ; Temperature ; Water - chemistry ; X-Ray Diffraction</subject><ispartof>Acta biomaterialia, 2011-02, Vol.7 (2), p.791-799</ispartof><rights>2010 Acta Materialia Inc.</rights><rights>Copyright © 2010 Acta Materialia Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-8dd9735fee8b9b1c2b334799a477386cbe4c6913b91faadba4890762ea1799c93</citedby><cites>FETCH-LOGICAL-c483t-8dd9735fee8b9b1c2b334799a477386cbe4c6913b91faadba4890762ea1799c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2010.09.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20883835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaudhry, Aqif A.</creatorcontrib><creatorcontrib>Yan, Haixue</creatorcontrib><creatorcontrib>Gong, Kenan</creatorcontrib><creatorcontrib>Inam, Fawad</creatorcontrib><creatorcontrib>Viola, Giuseppe</creatorcontrib><creatorcontrib>Reece, Mike J.</creatorcontrib><creatorcontrib>Goodall, Josephine B.M.</creatorcontrib><creatorcontrib>ur Rehman, Ihtesham</creatorcontrib><creatorcontrib>McNeil-Watson, Fraser K.</creatorcontrib><creatorcontrib>Corbett, Jason C.W.</creatorcontrib><creatorcontrib>Knowles, Jonathan C.</creatorcontrib><creatorcontrib>Darr, Jawwad A.</creatorcontrib><title>High-strength nanograined and translucent hydroxyapatite monoliths via continuous hydrothermal synthesis and optimized spark plasma sintering</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>The synthesis of high-strength, completely dense nanograined hydroxyapatite (bioceramic) monoliths is a challenge as high temperatures or long sintering times are often required. In this study, nanorods of hydroxyapatite (HA) and calcium-deficient HA (made using a novel continuous hydrothermal flow synthesis method) were consolidated using spark plasma sintering (SPS) up to full theoretical density in ∼5
min at temperatures up to 1000
°C. After significant optimization of the SPS heating and loading cycles, fully dense HA discs were obtained which were translucent, suggesting very high densities. Significantly high three-point flexural strength values for such materials (up to 158
MPa) were measured. Freeze-fracturing of disks followed by scanning electron microscopy investigation revealed selected samples possessed sub-200
nm sized grains and no visible pores, suggesting they were fully dense.</description><subject>CHFS</subject><subject>grains</subject><subject>heat</subject><subject>Hydroxyapatite</subject><subject>Hydroxyapatites - chemistry</subject><subject>Light</subject><subject>Materials Testing - methods</subject><subject>Nanobioceramics</subject><subject>Nanorods</subject><subject>Nanotubes - chemistry</subject><subject>Nanotubes - ultrastructure</subject><subject>Particle Size</subject><subject>Plasma Gases - chemistry</subject><subject>scanning electron microscopy</subject><subject>Scattering, Radiation</subject><subject>SPS</subject><subject>Temperature</subject><subject>Water - chemistry</subject><subject>X-Ray Diffraction</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQhyMEoqXwBghy45TFf5LYviChCihSJQ7QszVxJhsviR1sp-ryDrwz3qZwhJNH1jefZ_wripeU7Cih7dvDDkzqrN8xkq-I2hGmHhXnVApZiaaVj3MtalYJ0tKz4lmMB0K4pEw-Lc4YkZJL3pwXv67sfqxiCuj2aSwdOL8PYB32Jbi-TAFcnFaDLpXjsQ_-7ggLJJuwnL3zk01jLG8tlMa7ZN3q17hxacQww1TGo8tltPFe55dkZ_szy-MC4Xu5TBBnKKN1CYN1--fFkwGmiC8ezovi5uOHb5dX1fWXT58v319XppY8VbLvleDNgCg71VHDOs5roRTUQnDZmg5r0yrKO0UHgL6DWioiWoZAM2UUvyjebN4l-B8rxqRnGw1OEzjMK2hFJWlVy5r_kpIx3jLOTs56I03wMQYc9BLsDOGoKdGnxPRBb4npU2KaKE3u2149PLB2M_Z_m_5ElIHXGzCA17APNuqbr9nQkGwRkpNMvNsIzF92azHoaCw6g70NaJLuvf33DL8BCKy3Jg</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Chaudhry, Aqif A.</creator><creator>Yan, Haixue</creator><creator>Gong, Kenan</creator><creator>Inam, Fawad</creator><creator>Viola, Giuseppe</creator><creator>Reece, Mike J.</creator><creator>Goodall, Josephine B.M.</creator><creator>ur Rehman, Ihtesham</creator><creator>McNeil-Watson, Fraser K.</creator><creator>Corbett, Jason C.W.</creator><creator>Knowles, Jonathan C.</creator><creator>Darr, Jawwad A.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110201</creationdate><title>High-strength nanograined and translucent hydroxyapatite monoliths via continuous hydrothermal synthesis and optimized spark plasma sintering</title><author>Chaudhry, Aqif A. ; Yan, Haixue ; Gong, Kenan ; Inam, Fawad ; Viola, Giuseppe ; Reece, Mike J. ; Goodall, Josephine B.M. ; ur Rehman, Ihtesham ; McNeil-Watson, Fraser K. ; Corbett, Jason C.W. ; Knowles, Jonathan C. ; Darr, Jawwad A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-8dd9735fee8b9b1c2b334799a477386cbe4c6913b91faadba4890762ea1799c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>CHFS</topic><topic>grains</topic><topic>heat</topic><topic>Hydroxyapatite</topic><topic>Hydroxyapatites - chemistry</topic><topic>Light</topic><topic>Materials Testing - methods</topic><topic>Nanobioceramics</topic><topic>Nanorods</topic><topic>Nanotubes - chemistry</topic><topic>Nanotubes - ultrastructure</topic><topic>Particle Size</topic><topic>Plasma Gases - chemistry</topic><topic>scanning electron microscopy</topic><topic>Scattering, Radiation</topic><topic>SPS</topic><topic>Temperature</topic><topic>Water - chemistry</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhry, Aqif A.</creatorcontrib><creatorcontrib>Yan, Haixue</creatorcontrib><creatorcontrib>Gong, Kenan</creatorcontrib><creatorcontrib>Inam, Fawad</creatorcontrib><creatorcontrib>Viola, Giuseppe</creatorcontrib><creatorcontrib>Reece, Mike J.</creatorcontrib><creatorcontrib>Goodall, Josephine B.M.</creatorcontrib><creatorcontrib>ur Rehman, Ihtesham</creatorcontrib><creatorcontrib>McNeil-Watson, Fraser K.</creatorcontrib><creatorcontrib>Corbett, Jason C.W.</creatorcontrib><creatorcontrib>Knowles, Jonathan C.</creatorcontrib><creatorcontrib>Darr, Jawwad A.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhry, Aqif A.</au><au>Yan, Haixue</au><au>Gong, Kenan</au><au>Inam, Fawad</au><au>Viola, Giuseppe</au><au>Reece, Mike J.</au><au>Goodall, Josephine B.M.</au><au>ur Rehman, Ihtesham</au><au>McNeil-Watson, Fraser K.</au><au>Corbett, Jason C.W.</au><au>Knowles, Jonathan C.</au><au>Darr, Jawwad A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-strength nanograined and translucent hydroxyapatite monoliths via continuous hydrothermal synthesis and optimized spark plasma sintering</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>7</volume><issue>2</issue><spage>791</spage><epage>799</epage><pages>791-799</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>The synthesis of high-strength, completely dense nanograined hydroxyapatite (bioceramic) monoliths is a challenge as high temperatures or long sintering times are often required. In this study, nanorods of hydroxyapatite (HA) and calcium-deficient HA (made using a novel continuous hydrothermal flow synthesis method) were consolidated using spark plasma sintering (SPS) up to full theoretical density in ∼5
min at temperatures up to 1000
°C. After significant optimization of the SPS heating and loading cycles, fully dense HA discs were obtained which were translucent, suggesting very high densities. Significantly high three-point flexural strength values for such materials (up to 158
MPa) were measured. Freeze-fracturing of disks followed by scanning electron microscopy investigation revealed selected samples possessed sub-200
nm sized grains and no visible pores, suggesting they were fully dense.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>20883835</pmid><doi>10.1016/j.actbio.2010.09.029</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2011-02, Vol.7 (2), p.791-799 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_918069625 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | CHFS grains heat Hydroxyapatite Hydroxyapatites - chemistry Light Materials Testing - methods Nanobioceramics Nanorods Nanotubes - chemistry Nanotubes - ultrastructure Particle Size Plasma Gases - chemistry scanning electron microscopy Scattering, Radiation SPS Temperature Water - chemistry X-Ray Diffraction |
title | High-strength nanograined and translucent hydroxyapatite monoliths via continuous hydrothermal synthesis and optimized spark plasma sintering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-strength%20nanograined%20and%20translucent%20hydroxyapatite%20monoliths%20via%20continuous%20hydrothermal%20synthesis%20and%20optimized%20spark%20plasma%20sintering&rft.jtitle=Acta%20biomaterialia&rft.au=Chaudhry,%20Aqif%20A.&rft.date=2011-02-01&rft.volume=7&rft.issue=2&rft.spage=791&rft.epage=799&rft.pages=791-799&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2010.09.029&rft_dat=%3Cproquest_cross%3E918069625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=822362329&rft_id=info:pmid/20883835&rft_els_id=S1742706110004393&rfr_iscdi=true |