A hybrid procedure for energy demand forecasting in China

Energy consumption in China is continuously increasing. Accordingly, the present paper aims to develop a hybrid procedure for energy demand forecasting in China with higher precision. The mechanism of the affecting factors of China’s energy demand is investigated via path-coefficient analysis. The m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2012, Vol.37 (1), p.396-404
Hauptverfasser: Yu, Shi-wei, Zhu, Ke-jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 404
container_issue 1
container_start_page 396
container_title Energy (Oxford)
container_volume 37
creator Yu, Shi-wei
Zhu, Ke-jun
description Energy consumption in China is continuously increasing. Accordingly, the present paper aims to develop a hybrid procedure for energy demand forecasting in China with higher precision. The mechanism of the affecting factors of China’s energy demand is investigated via path-coefficient analysis. The main affecting factors include gross domestic product, population, economic structure, urbanization rate, and energy structure. These factors are the inputs of the model with three forms: linear, exponential, and quadratic. To obtain better parameters, an improved hybrid algorithm called PSO-GA (particle swarm optimization-genetic algorithm) is proposed. This proposed algorithm differs from previous hybrids in the two ways. First, the GA and PSO approaches produce a hybrid hierarchy. Second, two information transfers are accomplished in the process. Results of this study show that China’s energy demand will be 4.70 billion tons coal equivalent in 2015. Furthermore, the proposed forecast method shows its superiority compared with single optimization methods, such as GA, PSO or ant colony optimization, and multiple linear regressions. ► The effect mechanism of China’s energy demand is investigated detailedly. ► A hybrid procedure for energy demand forecasting in China with higher precision was proposed. ► China’s energy demand will reach 4.70 billion tce in 2015.
doi_str_mv 10.1016/j.energy.2011.11.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918068858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S036054421100733X</els_id><sourcerecordid>918068858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-d57ae5ba3e37862b04683cfd13e357972819bca7b1102f8c79cd56f838475f3d3</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRbVooenjDwr1pnRlV7IkS9oUQugLAl20WQtZj0TBkVPJKeTvK-PQZWFAMJy5mjkA3CJYIYiax21lg43rY1VDhKpcENEzMIO4gSUlpL4AlyltIYSUCzEDYl5sjm30ptjHXltziLZwfSymkMLYnQpm7Fit0uDDuvChWGx8UNfg3Kku2ZvTewVWL89fi7dy-fH6vpgvS01qPJSGMmVpq7DFjDd1C0nDsXYG5QZlgtUciVYr1iIEa8c1E9rQxnHMCaMOG3wFHqbcvOD3waZB7nzStutUsP0hSYE4bDinPJNkInXsU4rWyX30OxWPEkE5ypFbOd0lRzkyV5aTx-5PH6ikVeeiCtqnv9maEggRHrm7iXOql2odM7P6zEFNlskgJiITTxNhs48fb6NM2tuQtfrsb5Cm9_-v8guHOYYn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918068858</pqid></control><display><type>article</type><title>A hybrid procedure for energy demand forecasting in China</title><source>Elsevier ScienceDirect Journals</source><creator>Yu, Shi-wei ; Zhu, Ke-jun</creator><creatorcontrib>Yu, Shi-wei ; Zhu, Ke-jun</creatorcontrib><description>Energy consumption in China is continuously increasing. Accordingly, the present paper aims to develop a hybrid procedure for energy demand forecasting in China with higher precision. The mechanism of the affecting factors of China’s energy demand is investigated via path-coefficient analysis. The main affecting factors include gross domestic product, population, economic structure, urbanization rate, and energy structure. These factors are the inputs of the model with three forms: linear, exponential, and quadratic. To obtain better parameters, an improved hybrid algorithm called PSO-GA (particle swarm optimization-genetic algorithm) is proposed. This proposed algorithm differs from previous hybrids in the two ways. First, the GA and PSO approaches produce a hybrid hierarchy. Second, two information transfers are accomplished in the process. Results of this study show that China’s energy demand will be 4.70 billion tons coal equivalent in 2015. Furthermore, the proposed forecast method shows its superiority compared with single optimization methods, such as GA, PSO or ant colony optimization, and multiple linear regressions. ► The effect mechanism of China’s energy demand is investigated detailedly. ► A hybrid procedure for energy demand forecasting in China with higher precision was proposed. ► China’s energy demand will reach 4.70 billion tce in 2015.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2011.11.015</identifier><identifier>CODEN: ENEYDS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>algorithms ; Applied sciences ; coal ; economic structure ; Energy ; Energy demand projection ; Exact sciences and technology ; Formicidae ; gross domestic product ; Improved particle swarm optimization-genetic algorithm ; Path-coefficient analysis ; system optimization ; urbanization</subject><ispartof>Energy (Oxford), 2012, Vol.37 (1), p.396-404</ispartof><rights>2011 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-d57ae5ba3e37862b04683cfd13e357972819bca7b1102f8c79cd56f838475f3d3</citedby><cites>FETCH-LOGICAL-c423t-d57ae5ba3e37862b04683cfd13e357972819bca7b1102f8c79cd56f838475f3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2011.11.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,4010,27904,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25400135$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Shi-wei</creatorcontrib><creatorcontrib>Zhu, Ke-jun</creatorcontrib><title>A hybrid procedure for energy demand forecasting in China</title><title>Energy (Oxford)</title><description>Energy consumption in China is continuously increasing. Accordingly, the present paper aims to develop a hybrid procedure for energy demand forecasting in China with higher precision. The mechanism of the affecting factors of China’s energy demand is investigated via path-coefficient analysis. The main affecting factors include gross domestic product, population, economic structure, urbanization rate, and energy structure. These factors are the inputs of the model with three forms: linear, exponential, and quadratic. To obtain better parameters, an improved hybrid algorithm called PSO-GA (particle swarm optimization-genetic algorithm) is proposed. This proposed algorithm differs from previous hybrids in the two ways. First, the GA and PSO approaches produce a hybrid hierarchy. Second, two information transfers are accomplished in the process. Results of this study show that China’s energy demand will be 4.70 billion tons coal equivalent in 2015. Furthermore, the proposed forecast method shows its superiority compared with single optimization methods, such as GA, PSO or ant colony optimization, and multiple linear regressions. ► The effect mechanism of China’s energy demand is investigated detailedly. ► A hybrid procedure for energy demand forecasting in China with higher precision was proposed. ► China’s energy demand will reach 4.70 billion tce in 2015.</description><subject>algorithms</subject><subject>Applied sciences</subject><subject>coal</subject><subject>economic structure</subject><subject>Energy</subject><subject>Energy demand projection</subject><subject>Exact sciences and technology</subject><subject>Formicidae</subject><subject>gross domestic product</subject><subject>Improved particle swarm optimization-genetic algorithm</subject><subject>Path-coefficient analysis</subject><subject>system optimization</subject><subject>urbanization</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRbVooenjDwr1pnRlV7IkS9oUQugLAl20WQtZj0TBkVPJKeTvK-PQZWFAMJy5mjkA3CJYIYiax21lg43rY1VDhKpcENEzMIO4gSUlpL4AlyltIYSUCzEDYl5sjm30ptjHXltziLZwfSymkMLYnQpm7Fit0uDDuvChWGx8UNfg3Kku2ZvTewVWL89fi7dy-fH6vpgvS01qPJSGMmVpq7DFjDd1C0nDsXYG5QZlgtUciVYr1iIEa8c1E9rQxnHMCaMOG3wFHqbcvOD3waZB7nzStutUsP0hSYE4bDinPJNkInXsU4rWyX30OxWPEkE5ypFbOd0lRzkyV5aTx-5PH6ikVeeiCtqnv9maEggRHrm7iXOql2odM7P6zEFNlskgJiITTxNhs48fb6NM2tuQtfrsb5Cm9_-v8guHOYYn</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Yu, Shi-wei</creator><creator>Zhu, Ke-jun</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>2012</creationdate><title>A hybrid procedure for energy demand forecasting in China</title><author>Yu, Shi-wei ; Zhu, Ke-jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-d57ae5ba3e37862b04683cfd13e357972819bca7b1102f8c79cd56f838475f3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>algorithms</topic><topic>Applied sciences</topic><topic>coal</topic><topic>economic structure</topic><topic>Energy</topic><topic>Energy demand projection</topic><topic>Exact sciences and technology</topic><topic>Formicidae</topic><topic>gross domestic product</topic><topic>Improved particle swarm optimization-genetic algorithm</topic><topic>Path-coefficient analysis</topic><topic>system optimization</topic><topic>urbanization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Shi-wei</creatorcontrib><creatorcontrib>Zhu, Ke-jun</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Shi-wei</au><au>Zhu, Ke-jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid procedure for energy demand forecasting in China</atitle><jtitle>Energy (Oxford)</jtitle><date>2012</date><risdate>2012</risdate><volume>37</volume><issue>1</issue><spage>396</spage><epage>404</epage><pages>396-404</pages><issn>0360-5442</issn><coden>ENEYDS</coden><abstract>Energy consumption in China is continuously increasing. Accordingly, the present paper aims to develop a hybrid procedure for energy demand forecasting in China with higher precision. The mechanism of the affecting factors of China’s energy demand is investigated via path-coefficient analysis. The main affecting factors include gross domestic product, population, economic structure, urbanization rate, and energy structure. These factors are the inputs of the model with three forms: linear, exponential, and quadratic. To obtain better parameters, an improved hybrid algorithm called PSO-GA (particle swarm optimization-genetic algorithm) is proposed. This proposed algorithm differs from previous hybrids in the two ways. First, the GA and PSO approaches produce a hybrid hierarchy. Second, two information transfers are accomplished in the process. Results of this study show that China’s energy demand will be 4.70 billion tons coal equivalent in 2015. Furthermore, the proposed forecast method shows its superiority compared with single optimization methods, such as GA, PSO or ant colony optimization, and multiple linear regressions. ► The effect mechanism of China’s energy demand is investigated detailedly. ► A hybrid procedure for energy demand forecasting in China with higher precision was proposed. ► China’s energy demand will reach 4.70 billion tce in 2015.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2011.11.015</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2012, Vol.37 (1), p.396-404
issn 0360-5442
language eng
recordid cdi_proquest_miscellaneous_918068858
source Elsevier ScienceDirect Journals
subjects algorithms
Applied sciences
coal
economic structure
Energy
Energy demand projection
Exact sciences and technology
Formicidae
gross domestic product
Improved particle swarm optimization-genetic algorithm
Path-coefficient analysis
system optimization
urbanization
title A hybrid procedure for energy demand forecasting in China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20procedure%20for%20energy%20demand%20forecasting%20in%20China&rft.jtitle=Energy%20(Oxford)&rft.au=Yu,%20Shi-wei&rft.date=2012&rft.volume=37&rft.issue=1&rft.spage=396&rft.epage=404&rft.pages=396-404&rft.issn=0360-5442&rft.coden=ENEYDS&rft_id=info:doi/10.1016/j.energy.2011.11.015&rft_dat=%3Cproquest_cross%3E918068858%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918068858&rft_id=info:pmid/&rft_els_id=S036054421100733X&rfr_iscdi=true