Crystal structure and thermostability of a putative α-glucosidase from Thermotoga neapolitana
► We determined crystal structure of a putative α-glucosidase from Thermotoga neapolitana. ► We examine the dimeric assembly and Mn 2+ coordination in the structure. ► We examine that numerous arginine-mediated salt bridges in the structure. ► We confirm that the salt bridges play an important role...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2011-12, Vol.416 (1), p.92-98 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98 |
---|---|
container_issue | 1 |
container_start_page | 92 |
container_title | Biochemical and biophysical research communications |
container_volume | 416 |
creator | Yun, Bo-Young Jun, So-Young Kim, Nam Ah Yoon, Bo-Young Piao, Shunfu Park, So-Hae Jeong, Seong Hoon Lee, Heeseob Ha, Nam-Chul |
description | ► We determined crystal structure of a putative α-glucosidase from
Thermotoga neapolitana. ► We examine the dimeric assembly and Mn
2+ coordination in the structure. ► We examine that numerous arginine-mediated salt bridges in the structure. ► We confirm that the salt bridges play an important role in the thermostability of the enzyme.
Glycoside hydrolase family 4 (GH4) represents an unusual group of glucosidases with a requirement for NAD
+, Mn
2+, and reducing conditions. We found a putative α-glucosidase belonging to GH4 in hyperthermophilic Gram-negative bacterium
Thermotoga neapolitana. In this study, we recombinantly expressed the putative α-glycosidase from
T. neapolitana, and determined the crystal structure of the protein at a resolution of 2.0
Å in the presence of Mn
2+ but in the absence of NAD
+. The structure showed the dimeric assembly and the Mn
2+ coordination that other GH4 enzymes share. In comparison, we observed structural changes in
T. neapolitana α-glucosidase by the binding of NAD
+, which also increased the thermostability. Numerous arginine-mediated salt-bridges were observed in the structure, and we confirmed that the salt bridges correlated with the thermostability of the proteins. Disruption of the salt bridge that linked N-terminal and C-terminal parts at the surface dramatically decreased the thermostability. A mutation that changed the internal salt bridge to a hydrogen bond also decreased the thermostability of the protein. This study will help us to understand the function of the putative glucosidase and the structural features that affect the thermostability of the protein. |
doi_str_mv | 10.1016/j.bbrc.2011.11.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918065962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X11020018</els_id><sourcerecordid>911931483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-abb86b292bf952804a126fde77e61606ce2bdffe09a6e7e9de3665cc3d3f07f3</originalsourceid><addsrcrecordid>eNqNkM1uEzEUhS1UREPaF2CBvOtqwrUn8YwlNigqP1IlNlmwwvLPdXE0M05tT6U8Fi_CM-GQ0iVCOtJd3O-cxUfIGwYrBky826-MSXbFgbFVDQB_QRYMJDScwfqCLABANFyyb5fkdc57qOBayFfkknOQbc_lgnzfpmMueqC5pNmWOSHVk6PlB6Yx1ocJQyhHGj3V9DAXXcIj0l8_m_thtjEHpzNSn-JId38aJd5rOqE-xFrTk74iL70eMl4_3SXZfbzdbT83d18_fdl-uGts23el0cb0wnDJjZcb3sNaMy68w65DwQQIi9w47xGkFtihdNgKsbG2da2HzrdLcnOePaT4MGMuagzZ4jDoCeOclWQ9iI0U_D9IJlu27ttK8jNpU8w5oVeHFEadjoqBOvlXe3Xyr07-VU31X0tvn-ZnM6J7rvwVXoH3ZwCrjceASWUbcLLoQkJblIvhX_u_AYbYmWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911931483</pqid></control><display><type>article</type><title>Crystal structure and thermostability of a putative α-glucosidase from Thermotoga neapolitana</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yun, Bo-Young ; Jun, So-Young ; Kim, Nam Ah ; Yoon, Bo-Young ; Piao, Shunfu ; Park, So-Hae ; Jeong, Seong Hoon ; Lee, Heeseob ; Ha, Nam-Chul</creator><creatorcontrib>Yun, Bo-Young ; Jun, So-Young ; Kim, Nam Ah ; Yoon, Bo-Young ; Piao, Shunfu ; Park, So-Hae ; Jeong, Seong Hoon ; Lee, Heeseob ; Ha, Nam-Chul</creatorcontrib><description>► We determined crystal structure of a putative α-glucosidase from
Thermotoga neapolitana. ► We examine the dimeric assembly and Mn
2+ coordination in the structure. ► We examine that numerous arginine-mediated salt bridges in the structure. ► We confirm that the salt bridges play an important role in the thermostability of the enzyme.
Glycoside hydrolase family 4 (GH4) represents an unusual group of glucosidases with a requirement for NAD
+, Mn
2+, and reducing conditions. We found a putative α-glucosidase belonging to GH4 in hyperthermophilic Gram-negative bacterium
Thermotoga neapolitana. In this study, we recombinantly expressed the putative α-glycosidase from
T. neapolitana, and determined the crystal structure of the protein at a resolution of 2.0
Å in the presence of Mn
2+ but in the absence of NAD
+. The structure showed the dimeric assembly and the Mn
2+ coordination that other GH4 enzymes share. In comparison, we observed structural changes in
T. neapolitana α-glucosidase by the binding of NAD
+, which also increased the thermostability. Numerous arginine-mediated salt-bridges were observed in the structure, and we confirmed that the salt bridges correlated with the thermostability of the proteins. Disruption of the salt bridge that linked N-terminal and C-terminal parts at the surface dramatically decreased the thermostability. A mutation that changed the internal salt bridge to a hydrogen bond also decreased the thermostability of the protein. This study will help us to understand the function of the putative glucosidase and the structural features that affect the thermostability of the protein.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2011.11.002</identifier><identifier>PMID: 22093829</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>alpha-Glucosidases - chemistry ; alpha-Glucosidases - genetics ; Amino Acid Sequence ; Crystallography, X-Ray ; Enzyme Stability ; Glucoside hydrolase family 4 ; Hot Temperature ; Molecular Sequence Data ; NAD +-dependent enzyme ; Protein Conformation ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Salt bridge ; Thermostability ; Thermotoga neapolitana ; Thermotoga neapolitana - enzymology</subject><ispartof>Biochemical and biophysical research communications, 2011-12, Vol.416 (1), p.92-98</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-abb86b292bf952804a126fde77e61606ce2bdffe09a6e7e9de3665cc3d3f07f3</citedby><cites>FETCH-LOGICAL-c387t-abb86b292bf952804a126fde77e61606ce2bdffe09a6e7e9de3665cc3d3f07f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbrc.2011.11.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22093829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yun, Bo-Young</creatorcontrib><creatorcontrib>Jun, So-Young</creatorcontrib><creatorcontrib>Kim, Nam Ah</creatorcontrib><creatorcontrib>Yoon, Bo-Young</creatorcontrib><creatorcontrib>Piao, Shunfu</creatorcontrib><creatorcontrib>Park, So-Hae</creatorcontrib><creatorcontrib>Jeong, Seong Hoon</creatorcontrib><creatorcontrib>Lee, Heeseob</creatorcontrib><creatorcontrib>Ha, Nam-Chul</creatorcontrib><title>Crystal structure and thermostability of a putative α-glucosidase from Thermotoga neapolitana</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>► We determined crystal structure of a putative α-glucosidase from
Thermotoga neapolitana. ► We examine the dimeric assembly and Mn
2+ coordination in the structure. ► We examine that numerous arginine-mediated salt bridges in the structure. ► We confirm that the salt bridges play an important role in the thermostability of the enzyme.
Glycoside hydrolase family 4 (GH4) represents an unusual group of glucosidases with a requirement for NAD
+, Mn
2+, and reducing conditions. We found a putative α-glucosidase belonging to GH4 in hyperthermophilic Gram-negative bacterium
Thermotoga neapolitana. In this study, we recombinantly expressed the putative α-glycosidase from
T. neapolitana, and determined the crystal structure of the protein at a resolution of 2.0
Å in the presence of Mn
2+ but in the absence of NAD
+. The structure showed the dimeric assembly and the Mn
2+ coordination that other GH4 enzymes share. In comparison, we observed structural changes in
T. neapolitana α-glucosidase by the binding of NAD
+, which also increased the thermostability. Numerous arginine-mediated salt-bridges were observed in the structure, and we confirmed that the salt bridges correlated with the thermostability of the proteins. Disruption of the salt bridge that linked N-terminal and C-terminal parts at the surface dramatically decreased the thermostability. A mutation that changed the internal salt bridge to a hydrogen bond also decreased the thermostability of the protein. This study will help us to understand the function of the putative glucosidase and the structural features that affect the thermostability of the protein.</description><subject>alpha-Glucosidases - chemistry</subject><subject>alpha-Glucosidases - genetics</subject><subject>Amino Acid Sequence</subject><subject>Crystallography, X-Ray</subject><subject>Enzyme Stability</subject><subject>Glucoside hydrolase family 4</subject><subject>Hot Temperature</subject><subject>Molecular Sequence Data</subject><subject>NAD +-dependent enzyme</subject><subject>Protein Conformation</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Salt bridge</subject><subject>Thermostability</subject><subject>Thermotoga neapolitana</subject><subject>Thermotoga neapolitana - enzymology</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1uEzEUhS1UREPaF2CBvOtqwrUn8YwlNigqP1IlNlmwwvLPdXE0M05tT6U8Fi_CM-GQ0iVCOtJd3O-cxUfIGwYrBky826-MSXbFgbFVDQB_QRYMJDScwfqCLABANFyyb5fkdc57qOBayFfkknOQbc_lgnzfpmMueqC5pNmWOSHVk6PlB6Yx1ocJQyhHGj3V9DAXXcIj0l8_m_thtjEHpzNSn-JId38aJd5rOqE-xFrTk74iL70eMl4_3SXZfbzdbT83d18_fdl-uGts23el0cb0wnDJjZcb3sNaMy68w65DwQQIi9w47xGkFtihdNgKsbG2da2HzrdLcnOePaT4MGMuagzZ4jDoCeOclWQ9iI0U_D9IJlu27ttK8jNpU8w5oVeHFEadjoqBOvlXe3Xyr07-VU31X0tvn-ZnM6J7rvwVXoH3ZwCrjceASWUbcLLoQkJblIvhX_u_AYbYmWI</recordid><startdate>20111209</startdate><enddate>20111209</enddate><creator>Yun, Bo-Young</creator><creator>Jun, So-Young</creator><creator>Kim, Nam Ah</creator><creator>Yoon, Bo-Young</creator><creator>Piao, Shunfu</creator><creator>Park, So-Hae</creator><creator>Jeong, Seong Hoon</creator><creator>Lee, Heeseob</creator><creator>Ha, Nam-Chul</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20111209</creationdate><title>Crystal structure and thermostability of a putative α-glucosidase from Thermotoga neapolitana</title><author>Yun, Bo-Young ; Jun, So-Young ; Kim, Nam Ah ; Yoon, Bo-Young ; Piao, Shunfu ; Park, So-Hae ; Jeong, Seong Hoon ; Lee, Heeseob ; Ha, Nam-Chul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-abb86b292bf952804a126fde77e61606ce2bdffe09a6e7e9de3665cc3d3f07f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>alpha-Glucosidases - chemistry</topic><topic>alpha-Glucosidases - genetics</topic><topic>Amino Acid Sequence</topic><topic>Crystallography, X-Ray</topic><topic>Enzyme Stability</topic><topic>Glucoside hydrolase family 4</topic><topic>Hot Temperature</topic><topic>Molecular Sequence Data</topic><topic>NAD +-dependent enzyme</topic><topic>Protein Conformation</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Salt bridge</topic><topic>Thermostability</topic><topic>Thermotoga neapolitana</topic><topic>Thermotoga neapolitana - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Bo-Young</creatorcontrib><creatorcontrib>Jun, So-Young</creatorcontrib><creatorcontrib>Kim, Nam Ah</creatorcontrib><creatorcontrib>Yoon, Bo-Young</creatorcontrib><creatorcontrib>Piao, Shunfu</creatorcontrib><creatorcontrib>Park, So-Hae</creatorcontrib><creatorcontrib>Jeong, Seong Hoon</creatorcontrib><creatorcontrib>Lee, Heeseob</creatorcontrib><creatorcontrib>Ha, Nam-Chul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Bo-Young</au><au>Jun, So-Young</au><au>Kim, Nam Ah</au><au>Yoon, Bo-Young</au><au>Piao, Shunfu</au><au>Park, So-Hae</au><au>Jeong, Seong Hoon</au><au>Lee, Heeseob</au><au>Ha, Nam-Chul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structure and thermostability of a putative α-glucosidase from Thermotoga neapolitana</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2011-12-09</date><risdate>2011</risdate><volume>416</volume><issue>1</issue><spage>92</spage><epage>98</epage><pages>92-98</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>► We determined crystal structure of a putative α-glucosidase from
Thermotoga neapolitana. ► We examine the dimeric assembly and Mn
2+ coordination in the structure. ► We examine that numerous arginine-mediated salt bridges in the structure. ► We confirm that the salt bridges play an important role in the thermostability of the enzyme.
Glycoside hydrolase family 4 (GH4) represents an unusual group of glucosidases with a requirement for NAD
+, Mn
2+, and reducing conditions. We found a putative α-glucosidase belonging to GH4 in hyperthermophilic Gram-negative bacterium
Thermotoga neapolitana. In this study, we recombinantly expressed the putative α-glycosidase from
T. neapolitana, and determined the crystal structure of the protein at a resolution of 2.0
Å in the presence of Mn
2+ but in the absence of NAD
+. The structure showed the dimeric assembly and the Mn
2+ coordination that other GH4 enzymes share. In comparison, we observed structural changes in
T. neapolitana α-glucosidase by the binding of NAD
+, which also increased the thermostability. Numerous arginine-mediated salt-bridges were observed in the structure, and we confirmed that the salt bridges correlated with the thermostability of the proteins. Disruption of the salt bridge that linked N-terminal and C-terminal parts at the surface dramatically decreased the thermostability. A mutation that changed the internal salt bridge to a hydrogen bond also decreased the thermostability of the protein. This study will help us to understand the function of the putative glucosidase and the structural features that affect the thermostability of the protein.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22093829</pmid><doi>10.1016/j.bbrc.2011.11.002</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-291X |
ispartof | Biochemical and biophysical research communications, 2011-12, Vol.416 (1), p.92-98 |
issn | 0006-291X 1090-2104 |
language | eng |
recordid | cdi_proquest_miscellaneous_918065962 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | alpha-Glucosidases - chemistry alpha-Glucosidases - genetics Amino Acid Sequence Crystallography, X-Ray Enzyme Stability Glucoside hydrolase family 4 Hot Temperature Molecular Sequence Data NAD +-dependent enzyme Protein Conformation Recombinant Proteins - chemistry Recombinant Proteins - genetics Salt bridge Thermostability Thermotoga neapolitana Thermotoga neapolitana - enzymology |
title | Crystal structure and thermostability of a putative α-glucosidase from Thermotoga neapolitana |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structure%20and%20thermostability%20of%20a%20putative%20%CE%B1-glucosidase%20from%20Thermotoga%20neapolitana&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Yun,%20Bo-Young&rft.date=2011-12-09&rft.volume=416&rft.issue=1&rft.spage=92&rft.epage=98&rft.pages=92-98&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2011.11.002&rft_dat=%3Cproquest_cross%3E911931483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911931483&rft_id=info:pmid/22093829&rft_els_id=S0006291X11020018&rfr_iscdi=true |