Crystal structure and thermostability of a putative α-glucosidase from Thermotoga neapolitana

► We determined crystal structure of a putative α-glucosidase from Thermotoga neapolitana. ► We examine the dimeric assembly and Mn 2+ coordination in the structure. ► We examine that numerous arginine-mediated salt bridges in the structure. ► We confirm that the salt bridges play an important role...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2011-12, Vol.416 (1), p.92-98
Hauptverfasser: Yun, Bo-Young, Jun, So-Young, Kim, Nam Ah, Yoon, Bo-Young, Piao, Shunfu, Park, So-Hae, Jeong, Seong Hoon, Lee, Heeseob, Ha, Nam-Chul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue 1
container_start_page 92
container_title Biochemical and biophysical research communications
container_volume 416
creator Yun, Bo-Young
Jun, So-Young
Kim, Nam Ah
Yoon, Bo-Young
Piao, Shunfu
Park, So-Hae
Jeong, Seong Hoon
Lee, Heeseob
Ha, Nam-Chul
description ► We determined crystal structure of a putative α-glucosidase from Thermotoga neapolitana. ► We examine the dimeric assembly and Mn 2+ coordination in the structure. ► We examine that numerous arginine-mediated salt bridges in the structure. ► We confirm that the salt bridges play an important role in the thermostability of the enzyme. Glycoside hydrolase family 4 (GH4) represents an unusual group of glucosidases with a requirement for NAD +, Mn 2+, and reducing conditions. We found a putative α-glucosidase belonging to GH4 in hyperthermophilic Gram-negative bacterium Thermotoga neapolitana. In this study, we recombinantly expressed the putative α-glycosidase from T. neapolitana, and determined the crystal structure of the protein at a resolution of 2.0 Å in the presence of Mn 2+ but in the absence of NAD +. The structure showed the dimeric assembly and the Mn 2+ coordination that other GH4 enzymes share. In comparison, we observed structural changes in T. neapolitana α-glucosidase by the binding of NAD +, which also increased the thermostability. Numerous arginine-mediated salt-bridges were observed in the structure, and we confirmed that the salt bridges correlated with the thermostability of the proteins. Disruption of the salt bridge that linked N-terminal and C-terminal parts at the surface dramatically decreased the thermostability. A mutation that changed the internal salt bridge to a hydrogen bond also decreased the thermostability of the protein. This study will help us to understand the function of the putative glucosidase and the structural features that affect the thermostability of the protein.
doi_str_mv 10.1016/j.bbrc.2011.11.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918065962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X11020018</els_id><sourcerecordid>911931483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-abb86b292bf952804a126fde77e61606ce2bdffe09a6e7e9de3665cc3d3f07f3</originalsourceid><addsrcrecordid>eNqNkM1uEzEUhS1UREPaF2CBvOtqwrUn8YwlNigqP1IlNlmwwvLPdXE0M05tT6U8Fi_CM-GQ0iVCOtJd3O-cxUfIGwYrBky826-MSXbFgbFVDQB_QRYMJDScwfqCLABANFyyb5fkdc57qOBayFfkknOQbc_lgnzfpmMueqC5pNmWOSHVk6PlB6Yx1ocJQyhHGj3V9DAXXcIj0l8_m_thtjEHpzNSn-JId38aJd5rOqE-xFrTk74iL70eMl4_3SXZfbzdbT83d18_fdl-uGts23el0cb0wnDJjZcb3sNaMy68w65DwQQIi9w47xGkFtihdNgKsbG2da2HzrdLcnOePaT4MGMuagzZ4jDoCeOclWQ9iI0U_D9IJlu27ttK8jNpU8w5oVeHFEadjoqBOvlXe3Xyr07-VU31X0tvn-ZnM6J7rvwVXoH3ZwCrjceASWUbcLLoQkJblIvhX_u_AYbYmWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911931483</pqid></control><display><type>article</type><title>Crystal structure and thermostability of a putative α-glucosidase from Thermotoga neapolitana</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yun, Bo-Young ; Jun, So-Young ; Kim, Nam Ah ; Yoon, Bo-Young ; Piao, Shunfu ; Park, So-Hae ; Jeong, Seong Hoon ; Lee, Heeseob ; Ha, Nam-Chul</creator><creatorcontrib>Yun, Bo-Young ; Jun, So-Young ; Kim, Nam Ah ; Yoon, Bo-Young ; Piao, Shunfu ; Park, So-Hae ; Jeong, Seong Hoon ; Lee, Heeseob ; Ha, Nam-Chul</creatorcontrib><description>► We determined crystal structure of a putative α-glucosidase from Thermotoga neapolitana. ► We examine the dimeric assembly and Mn 2+ coordination in the structure. ► We examine that numerous arginine-mediated salt bridges in the structure. ► We confirm that the salt bridges play an important role in the thermostability of the enzyme. Glycoside hydrolase family 4 (GH4) represents an unusual group of glucosidases with a requirement for NAD +, Mn 2+, and reducing conditions. We found a putative α-glucosidase belonging to GH4 in hyperthermophilic Gram-negative bacterium Thermotoga neapolitana. In this study, we recombinantly expressed the putative α-glycosidase from T. neapolitana, and determined the crystal structure of the protein at a resolution of 2.0 Å in the presence of Mn 2+ but in the absence of NAD +. The structure showed the dimeric assembly and the Mn 2+ coordination that other GH4 enzymes share. In comparison, we observed structural changes in T. neapolitana α-glucosidase by the binding of NAD +, which also increased the thermostability. Numerous arginine-mediated salt-bridges were observed in the structure, and we confirmed that the salt bridges correlated with the thermostability of the proteins. Disruption of the salt bridge that linked N-terminal and C-terminal parts at the surface dramatically decreased the thermostability. A mutation that changed the internal salt bridge to a hydrogen bond also decreased the thermostability of the protein. This study will help us to understand the function of the putative glucosidase and the structural features that affect the thermostability of the protein.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2011.11.002</identifier><identifier>PMID: 22093829</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>alpha-Glucosidases - chemistry ; alpha-Glucosidases - genetics ; Amino Acid Sequence ; Crystallography, X-Ray ; Enzyme Stability ; Glucoside hydrolase family 4 ; Hot Temperature ; Molecular Sequence Data ; NAD +-dependent enzyme ; Protein Conformation ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Salt bridge ; Thermostability ; Thermotoga neapolitana ; Thermotoga neapolitana - enzymology</subject><ispartof>Biochemical and biophysical research communications, 2011-12, Vol.416 (1), p.92-98</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-abb86b292bf952804a126fde77e61606ce2bdffe09a6e7e9de3665cc3d3f07f3</citedby><cites>FETCH-LOGICAL-c387t-abb86b292bf952804a126fde77e61606ce2bdffe09a6e7e9de3665cc3d3f07f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbrc.2011.11.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22093829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yun, Bo-Young</creatorcontrib><creatorcontrib>Jun, So-Young</creatorcontrib><creatorcontrib>Kim, Nam Ah</creatorcontrib><creatorcontrib>Yoon, Bo-Young</creatorcontrib><creatorcontrib>Piao, Shunfu</creatorcontrib><creatorcontrib>Park, So-Hae</creatorcontrib><creatorcontrib>Jeong, Seong Hoon</creatorcontrib><creatorcontrib>Lee, Heeseob</creatorcontrib><creatorcontrib>Ha, Nam-Chul</creatorcontrib><title>Crystal structure and thermostability of a putative α-glucosidase from Thermotoga neapolitana</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>► We determined crystal structure of a putative α-glucosidase from Thermotoga neapolitana. ► We examine the dimeric assembly and Mn 2+ coordination in the structure. ► We examine that numerous arginine-mediated salt bridges in the structure. ► We confirm that the salt bridges play an important role in the thermostability of the enzyme. Glycoside hydrolase family 4 (GH4) represents an unusual group of glucosidases with a requirement for NAD +, Mn 2+, and reducing conditions. We found a putative α-glucosidase belonging to GH4 in hyperthermophilic Gram-negative bacterium Thermotoga neapolitana. In this study, we recombinantly expressed the putative α-glycosidase from T. neapolitana, and determined the crystal structure of the protein at a resolution of 2.0 Å in the presence of Mn 2+ but in the absence of NAD +. The structure showed the dimeric assembly and the Mn 2+ coordination that other GH4 enzymes share. In comparison, we observed structural changes in T. neapolitana α-glucosidase by the binding of NAD +, which also increased the thermostability. Numerous arginine-mediated salt-bridges were observed in the structure, and we confirmed that the salt bridges correlated with the thermostability of the proteins. Disruption of the salt bridge that linked N-terminal and C-terminal parts at the surface dramatically decreased the thermostability. A mutation that changed the internal salt bridge to a hydrogen bond also decreased the thermostability of the protein. This study will help us to understand the function of the putative glucosidase and the structural features that affect the thermostability of the protein.</description><subject>alpha-Glucosidases - chemistry</subject><subject>alpha-Glucosidases - genetics</subject><subject>Amino Acid Sequence</subject><subject>Crystallography, X-Ray</subject><subject>Enzyme Stability</subject><subject>Glucoside hydrolase family 4</subject><subject>Hot Temperature</subject><subject>Molecular Sequence Data</subject><subject>NAD +-dependent enzyme</subject><subject>Protein Conformation</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Salt bridge</subject><subject>Thermostability</subject><subject>Thermotoga neapolitana</subject><subject>Thermotoga neapolitana - enzymology</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1uEzEUhS1UREPaF2CBvOtqwrUn8YwlNigqP1IlNlmwwvLPdXE0M05tT6U8Fi_CM-GQ0iVCOtJd3O-cxUfIGwYrBky826-MSXbFgbFVDQB_QRYMJDScwfqCLABANFyyb5fkdc57qOBayFfkknOQbc_lgnzfpmMueqC5pNmWOSHVk6PlB6Yx1ocJQyhHGj3V9DAXXcIj0l8_m_thtjEHpzNSn-JId38aJd5rOqE-xFrTk74iL70eMl4_3SXZfbzdbT83d18_fdl-uGts23el0cb0wnDJjZcb3sNaMy68w65DwQQIi9w47xGkFtihdNgKsbG2da2HzrdLcnOePaT4MGMuagzZ4jDoCeOclWQ9iI0U_D9IJlu27ttK8jNpU8w5oVeHFEadjoqBOvlXe3Xyr07-VU31X0tvn-ZnM6J7rvwVXoH3ZwCrjceASWUbcLLoQkJblIvhX_u_AYbYmWI</recordid><startdate>20111209</startdate><enddate>20111209</enddate><creator>Yun, Bo-Young</creator><creator>Jun, So-Young</creator><creator>Kim, Nam Ah</creator><creator>Yoon, Bo-Young</creator><creator>Piao, Shunfu</creator><creator>Park, So-Hae</creator><creator>Jeong, Seong Hoon</creator><creator>Lee, Heeseob</creator><creator>Ha, Nam-Chul</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20111209</creationdate><title>Crystal structure and thermostability of a putative α-glucosidase from Thermotoga neapolitana</title><author>Yun, Bo-Young ; Jun, So-Young ; Kim, Nam Ah ; Yoon, Bo-Young ; Piao, Shunfu ; Park, So-Hae ; Jeong, Seong Hoon ; Lee, Heeseob ; Ha, Nam-Chul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-abb86b292bf952804a126fde77e61606ce2bdffe09a6e7e9de3665cc3d3f07f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>alpha-Glucosidases - chemistry</topic><topic>alpha-Glucosidases - genetics</topic><topic>Amino Acid Sequence</topic><topic>Crystallography, X-Ray</topic><topic>Enzyme Stability</topic><topic>Glucoside hydrolase family 4</topic><topic>Hot Temperature</topic><topic>Molecular Sequence Data</topic><topic>NAD +-dependent enzyme</topic><topic>Protein Conformation</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Salt bridge</topic><topic>Thermostability</topic><topic>Thermotoga neapolitana</topic><topic>Thermotoga neapolitana - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Bo-Young</creatorcontrib><creatorcontrib>Jun, So-Young</creatorcontrib><creatorcontrib>Kim, Nam Ah</creatorcontrib><creatorcontrib>Yoon, Bo-Young</creatorcontrib><creatorcontrib>Piao, Shunfu</creatorcontrib><creatorcontrib>Park, So-Hae</creatorcontrib><creatorcontrib>Jeong, Seong Hoon</creatorcontrib><creatorcontrib>Lee, Heeseob</creatorcontrib><creatorcontrib>Ha, Nam-Chul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Bo-Young</au><au>Jun, So-Young</au><au>Kim, Nam Ah</au><au>Yoon, Bo-Young</au><au>Piao, Shunfu</au><au>Park, So-Hae</au><au>Jeong, Seong Hoon</au><au>Lee, Heeseob</au><au>Ha, Nam-Chul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structure and thermostability of a putative α-glucosidase from Thermotoga neapolitana</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2011-12-09</date><risdate>2011</risdate><volume>416</volume><issue>1</issue><spage>92</spage><epage>98</epage><pages>92-98</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>► We determined crystal structure of a putative α-glucosidase from Thermotoga neapolitana. ► We examine the dimeric assembly and Mn 2+ coordination in the structure. ► We examine that numerous arginine-mediated salt bridges in the structure. ► We confirm that the salt bridges play an important role in the thermostability of the enzyme. Glycoside hydrolase family 4 (GH4) represents an unusual group of glucosidases with a requirement for NAD +, Mn 2+, and reducing conditions. We found a putative α-glucosidase belonging to GH4 in hyperthermophilic Gram-negative bacterium Thermotoga neapolitana. In this study, we recombinantly expressed the putative α-glycosidase from T. neapolitana, and determined the crystal structure of the protein at a resolution of 2.0 Å in the presence of Mn 2+ but in the absence of NAD +. The structure showed the dimeric assembly and the Mn 2+ coordination that other GH4 enzymes share. In comparison, we observed structural changes in T. neapolitana α-glucosidase by the binding of NAD +, which also increased the thermostability. Numerous arginine-mediated salt-bridges were observed in the structure, and we confirmed that the salt bridges correlated with the thermostability of the proteins. Disruption of the salt bridge that linked N-terminal and C-terminal parts at the surface dramatically decreased the thermostability. A mutation that changed the internal salt bridge to a hydrogen bond also decreased the thermostability of the protein. This study will help us to understand the function of the putative glucosidase and the structural features that affect the thermostability of the protein.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22093829</pmid><doi>10.1016/j.bbrc.2011.11.002</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-291X
ispartof Biochemical and biophysical research communications, 2011-12, Vol.416 (1), p.92-98
issn 0006-291X
1090-2104
language eng
recordid cdi_proquest_miscellaneous_918065962
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects alpha-Glucosidases - chemistry
alpha-Glucosidases - genetics
Amino Acid Sequence
Crystallography, X-Ray
Enzyme Stability
Glucoside hydrolase family 4
Hot Temperature
Molecular Sequence Data
NAD +-dependent enzyme
Protein Conformation
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Salt bridge
Thermostability
Thermotoga neapolitana
Thermotoga neapolitana - enzymology
title Crystal structure and thermostability of a putative α-glucosidase from Thermotoga neapolitana
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structure%20and%20thermostability%20of%20a%20putative%20%CE%B1-glucosidase%20from%20Thermotoga%20neapolitana&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Yun,%20Bo-Young&rft.date=2011-12-09&rft.volume=416&rft.issue=1&rft.spage=92&rft.epage=98&rft.pages=92-98&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2011.11.002&rft_dat=%3Cproquest_cross%3E911931483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911931483&rft_id=info:pmid/22093829&rft_els_id=S0006291X11020018&rfr_iscdi=true