Lunar potassium distribution: Results from Chang’E-1 gamma ray spectrometer

The global map of potassium is represented in this paper from Chang’E-1 (CE-1) Gamma-ray Spectrometer (CGRS) for its one-year mission. Assuming a linear relationship between net count rate and its abundance, the average potassium abundance of individual landing sites is used as ground-truth for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Physics, mechanics & astronomy mechanics & astronomy, 2011-11, Vol.54 (11), p.2083-2090
Hauptverfasser: Zhu, Meng-Hua, Ma, Tao, Chang, Jin, Tang, ZeSheng, Ip, Wing-Huen, Xu, AoAo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2090
container_issue 11
container_start_page 2083
container_title Science China. Physics, mechanics & astronomy
container_volume 54
creator Zhu, Meng-Hua
Ma, Tao
Chang, Jin
Tang, ZeSheng
Ip, Wing-Huen
Xu, AoAo
description The global map of potassium is represented in this paper from Chang’E-1 (CE-1) Gamma-ray Spectrometer (CGRS) for its one-year mission. Assuming a linear relationship between net count rate and its abundance, the average potassium abundance of individual landing sites is used as ground-truth for the calibration to derive the global map of absolute concentration. Although CGRS spectra have a lower signal-to-noise ratio, the translated map still keeps relative variations. As calculated from Apollo, Lunar Prospector, and Kaguya, global potassium map from CGRS shows high concentrations on the lunar nearside and secondary concentrations located in the South Pole-Aitken (SPA) basin on the farside. The comparison with Lunar Prospector potassium map shows a good correlation, though abundances on the highlands of the farside are much lower than that of Lunar Prospector. Since the footprint of CGRS measurements is larger than the sampling radius of each landing site, the calibrated map shows a larger variation range of the scale than that of Lunar Prospector, which was derived using theoretical calculation; namely, the calibrated map has higher values in the areas with high concentration while having lower values for the areas with lower concentration. However, the derived potassium map is more consistent with the lunar sample data than that of Lunar Prospector.
doi_str_mv 10.1007/s11433-011-4491-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918065366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918579783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-3293fc3c0e8a07ebdcbc066fa8a0e8780bffc61efc76efe6276f40d5a28bc93f3</originalsourceid><addsrcrecordid>eNp1kM9KAzEQxoMoWLQP4C3gwVM02WyTrDcp9Q9UBNFzyKaTumX_mWShvfkavp5PYsoKguBcZob5fR_Dh9AZo5eMUnkVGMs5J5QxkucFI9sDNGFKFIQVmTxMs5A5kTxXx2gawoam4gXNZT5Bj8uhNR73XTQhVEODV1WIviqHWHXtNX6GMNQxYOe7Bs_fTLv--vhcEIbXpmkM9maHQw82pjNE8KfoyJk6wPSnn6DX28XL_J4sn-4e5jdLYtMTkfCs4M5yS0EZKqFc2dJSIZxJKyipaOmcFQyclQIciEwKl9PVzGSqtEnKT9DF6Nv77n2AEHVTBQt1bVrohqALpqiYcSESef6H3HSDb9NzOkvUTBZS8USxkbK-C8GD072vGuN3mlG9j1iPEesUsd5HrLdJk42akNh2Df7X-X_RN0AWgIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918579783</pqid></control><display><type>article</type><title>Lunar potassium distribution: Results from Chang’E-1 gamma ray spectrometer</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhu, Meng-Hua ; Ma, Tao ; Chang, Jin ; Tang, ZeSheng ; Ip, Wing-Huen ; Xu, AoAo</creator><creatorcontrib>Zhu, Meng-Hua ; Ma, Tao ; Chang, Jin ; Tang, ZeSheng ; Ip, Wing-Huen ; Xu, AoAo</creatorcontrib><description>The global map of potassium is represented in this paper from Chang’E-1 (CE-1) Gamma-ray Spectrometer (CGRS) for its one-year mission. Assuming a linear relationship between net count rate and its abundance, the average potassium abundance of individual landing sites is used as ground-truth for the calibration to derive the global map of absolute concentration. Although CGRS spectra have a lower signal-to-noise ratio, the translated map still keeps relative variations. As calculated from Apollo, Lunar Prospector, and Kaguya, global potassium map from CGRS shows high concentrations on the lunar nearside and secondary concentrations located in the South Pole-Aitken (SPA) basin on the farside. The comparison with Lunar Prospector potassium map shows a good correlation, though abundances on the highlands of the farside are much lower than that of Lunar Prospector. Since the footprint of CGRS measurements is larger than the sampling radius of each landing site, the calibrated map shows a larger variation range of the scale than that of Lunar Prospector, which was derived using theoretical calculation; namely, the calibrated map has higher values in the areas with high concentration while having lower values for the areas with lower concentration. However, the derived potassium map is more consistent with the lunar sample data than that of Lunar Prospector.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-011-4491-x</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Abundance ; Astronomy ; Calibration ; Classical and Continuum Physics ; Gamma ray spectrometers ; Gamma rays ; Landing sites ; Lunar Prospector ; Mathematical analysis ; Observations and Techniques ; Physics ; Physics and Astronomy ; Potassium ; Research Paper ; Signal to noise ratio ; South Pole</subject><ispartof>Science China. Physics, mechanics &amp; astronomy, 2011-11, Vol.54 (11), p.2083-2090</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2011</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-3293fc3c0e8a07ebdcbc066fa8a0e8780bffc61efc76efe6276f40d5a28bc93f3</citedby><cites>FETCH-LOGICAL-c348t-3293fc3c0e8a07ebdcbc066fa8a0e8780bffc61efc76efe6276f40d5a28bc93f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11433-011-4491-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11433-011-4491-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zhu, Meng-Hua</creatorcontrib><creatorcontrib>Ma, Tao</creatorcontrib><creatorcontrib>Chang, Jin</creatorcontrib><creatorcontrib>Tang, ZeSheng</creatorcontrib><creatorcontrib>Ip, Wing-Huen</creatorcontrib><creatorcontrib>Xu, AoAo</creatorcontrib><title>Lunar potassium distribution: Results from Chang’E-1 gamma ray spectrometer</title><title>Science China. Physics, mechanics &amp; astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><description>The global map of potassium is represented in this paper from Chang’E-1 (CE-1) Gamma-ray Spectrometer (CGRS) for its one-year mission. Assuming a linear relationship between net count rate and its abundance, the average potassium abundance of individual landing sites is used as ground-truth for the calibration to derive the global map of absolute concentration. Although CGRS spectra have a lower signal-to-noise ratio, the translated map still keeps relative variations. As calculated from Apollo, Lunar Prospector, and Kaguya, global potassium map from CGRS shows high concentrations on the lunar nearside and secondary concentrations located in the South Pole-Aitken (SPA) basin on the farside. The comparison with Lunar Prospector potassium map shows a good correlation, though abundances on the highlands of the farside are much lower than that of Lunar Prospector. Since the footprint of CGRS measurements is larger than the sampling radius of each landing site, the calibrated map shows a larger variation range of the scale than that of Lunar Prospector, which was derived using theoretical calculation; namely, the calibrated map has higher values in the areas with high concentration while having lower values for the areas with lower concentration. However, the derived potassium map is more consistent with the lunar sample data than that of Lunar Prospector.</description><subject>Abundance</subject><subject>Astronomy</subject><subject>Calibration</subject><subject>Classical and Continuum Physics</subject><subject>Gamma ray spectrometers</subject><subject>Gamma rays</subject><subject>Landing sites</subject><subject>Lunar Prospector</subject><subject>Mathematical analysis</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Potassium</subject><subject>Research Paper</subject><subject>Signal to noise ratio</subject><subject>South Pole</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM9KAzEQxoMoWLQP4C3gwVM02WyTrDcp9Q9UBNFzyKaTumX_mWShvfkavp5PYsoKguBcZob5fR_Dh9AZo5eMUnkVGMs5J5QxkucFI9sDNGFKFIQVmTxMs5A5kTxXx2gawoam4gXNZT5Bj8uhNR73XTQhVEODV1WIviqHWHXtNX6GMNQxYOe7Bs_fTLv--vhcEIbXpmkM9maHQw82pjNE8KfoyJk6wPSnn6DX28XL_J4sn-4e5jdLYtMTkfCs4M5yS0EZKqFc2dJSIZxJKyipaOmcFQyclQIciEwKl9PVzGSqtEnKT9DF6Nv77n2AEHVTBQt1bVrohqALpqiYcSESef6H3HSDb9NzOkvUTBZS8USxkbK-C8GD072vGuN3mlG9j1iPEesUsd5HrLdJk42akNh2Df7X-X_RN0AWgIM</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Zhu, Meng-Hua</creator><creator>Ma, Tao</creator><creator>Chang, Jin</creator><creator>Tang, ZeSheng</creator><creator>Ip, Wing-Huen</creator><creator>Xu, AoAo</creator><general>SP Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20111101</creationdate><title>Lunar potassium distribution: Results from Chang’E-1 gamma ray spectrometer</title><author>Zhu, Meng-Hua ; Ma, Tao ; Chang, Jin ; Tang, ZeSheng ; Ip, Wing-Huen ; Xu, AoAo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-3293fc3c0e8a07ebdcbc066fa8a0e8780bffc61efc76efe6276f40d5a28bc93f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Abundance</topic><topic>Astronomy</topic><topic>Calibration</topic><topic>Classical and Continuum Physics</topic><topic>Gamma ray spectrometers</topic><topic>Gamma rays</topic><topic>Landing sites</topic><topic>Lunar Prospector</topic><topic>Mathematical analysis</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Potassium</topic><topic>Research Paper</topic><topic>Signal to noise ratio</topic><topic>South Pole</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Meng-Hua</creatorcontrib><creatorcontrib>Ma, Tao</creatorcontrib><creatorcontrib>Chang, Jin</creatorcontrib><creatorcontrib>Tang, ZeSheng</creatorcontrib><creatorcontrib>Ip, Wing-Huen</creatorcontrib><creatorcontrib>Xu, AoAo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Meng-Hua</au><au>Ma, Tao</au><au>Chang, Jin</au><au>Tang, ZeSheng</au><au>Ip, Wing-Huen</au><au>Xu, AoAo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lunar potassium distribution: Results from Chang’E-1 gamma ray spectrometer</atitle><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>54</volume><issue>11</issue><spage>2083</spage><epage>2090</epage><pages>2083-2090</pages><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>The global map of potassium is represented in this paper from Chang’E-1 (CE-1) Gamma-ray Spectrometer (CGRS) for its one-year mission. Assuming a linear relationship between net count rate and its abundance, the average potassium abundance of individual landing sites is used as ground-truth for the calibration to derive the global map of absolute concentration. Although CGRS spectra have a lower signal-to-noise ratio, the translated map still keeps relative variations. As calculated from Apollo, Lunar Prospector, and Kaguya, global potassium map from CGRS shows high concentrations on the lunar nearside and secondary concentrations located in the South Pole-Aitken (SPA) basin on the farside. The comparison with Lunar Prospector potassium map shows a good correlation, though abundances on the highlands of the farside are much lower than that of Lunar Prospector. Since the footprint of CGRS measurements is larger than the sampling radius of each landing site, the calibrated map shows a larger variation range of the scale than that of Lunar Prospector, which was derived using theoretical calculation; namely, the calibrated map has higher values in the areas with high concentration while having lower values for the areas with lower concentration. However, the derived potassium map is more consistent with the lunar sample data than that of Lunar Prospector.</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11433-011-4491-x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7348
ispartof Science China. Physics, mechanics & astronomy, 2011-11, Vol.54 (11), p.2083-2090
issn 1674-7348
1869-1927
language eng
recordid cdi_proquest_miscellaneous_918065366
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Abundance
Astronomy
Calibration
Classical and Continuum Physics
Gamma ray spectrometers
Gamma rays
Landing sites
Lunar Prospector
Mathematical analysis
Observations and Techniques
Physics
Physics and Astronomy
Potassium
Research Paper
Signal to noise ratio
South Pole
title Lunar potassium distribution: Results from Chang’E-1 gamma ray spectrometer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lunar%20potassium%20distribution:%20Results%20from%20Chang%E2%80%99E-1%20gamma%20ray%20spectrometer&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Zhu,%20Meng-Hua&rft.date=2011-11-01&rft.volume=54&rft.issue=11&rft.spage=2083&rft.epage=2090&rft.pages=2083-2090&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-011-4491-x&rft_dat=%3Cproquest_cross%3E2918579783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918579783&rft_id=info:pmid/&rfr_iscdi=true