Nanostructured poly(ε-caprolactone)–silica xerogel fibrous membrane for guided bone regeneration
A novel fibrous membrane was developed for guided bone regeneration (GBR) through electrospinning a uniform poly(ε-caprolactone) (PCL)–silica hybrid sol. The membrane was composed of fibers with a mean diameter of approximately 400 nm. The hybrid fibers were nano-sized with uniform patterns througho...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2010-09, Vol.6 (9), p.3557-3565 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3565 |
---|---|
container_issue | 9 |
container_start_page | 3557 |
container_title | Acta biomaterialia |
container_volume | 6 |
creator | Lee, Eun-Jung Teng, Shu-Hua Jang, Tae-Sik Wang, Peng Yook, Se-Won Kim, Hyoun-Ee Koh, Young-Hag |
description | A novel fibrous membrane was developed for guided bone regeneration (GBR) through electrospinning a uniform poly(ε-caprolactone) (PCL)–silica hybrid sol. The membrane was composed of fibers with a mean diameter of approximately 400
nm. The hybrid fibers were nano-sized with uniform patterns throughout the fibers, in contrast to the homogeneous structure of pure PCL fibers. The tensile strengths and elastic moduli of the membranes were significantly enhanced with increasing silica content up to 40%. The surfaces of the hybrid membranes were highly hydrophilic with a water contact angle of almost zero. The hybrid membranes possessed excellent in vitro cellular responses in terms of proliferation and differentiation of pre-osteoblast cells. The in vivo animal tests not only confirmed excellent biocompatibility but also revealed bioresorbability of the membranes. These mechanical and biomedical properties make the hybrid membranes very attractive as GBR applications. |
doi_str_mv | 10.1016/j.actbio.2010.03.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918061864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706110001480</els_id><sourcerecordid>918061864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-1c9dc6f493e30dcb4a14a90f78fd2008a5a3fd1fa20e99b683b90876496306e83</originalsourceid><addsrcrecordid>eNqFUUtuFDEUtBCIhMANEOpdYNHDc9vjzyZSFEESKYINrC23_TzyqLs92N1RsuMOOQvX4BCcBI8msITVe3qqelWqIuQ1hRUFKt5vV9bNfUyrDuoJ2Aq67gk5pkqqVq6Felp3ybtWgqBH5EUpWwCmaKeek6MOGHBK6TFxn-yUypwXNy8ZfbNLw_3bnz9aZ3c5DVUhTfju1_eHEofobHOHOW1waELsc1pKM-LYZzthE1JuNkv09UVfKU3GDU6Y7RzT9JI8C3Yo-OpxnpCvHz98ubhqbz5fXl-c37RuDTC31GnvROCaIQPvem4ptxqCVMF3AMquLQueBtsBat0LxXoNSgquBQOBip2Q08Pfav3bgmU2YywOh6EarGaNpqpmoQT_L1JypaVc8z2SH5Aup1IyBrPLcbT53lAw-x7M1hx6MPseDDBTe6i0N48CSz-i_0v6E3wFnB0AWAO5jZhNcREnhz5mdLPxKf5b4Tc7U53L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748977544</pqid></control><display><type>article</type><title>Nanostructured poly(ε-caprolactone)–silica xerogel fibrous membrane for guided bone regeneration</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Lee, Eun-Jung ; Teng, Shu-Hua ; Jang, Tae-Sik ; Wang, Peng ; Yook, Se-Won ; Kim, Hyoun-Ee ; Koh, Young-Hag</creator><creatorcontrib>Lee, Eun-Jung ; Teng, Shu-Hua ; Jang, Tae-Sik ; Wang, Peng ; Yook, Se-Won ; Kim, Hyoun-Ee ; Koh, Young-Hag</creatorcontrib><description>A novel fibrous membrane was developed for guided bone regeneration (GBR) through electrospinning a uniform poly(ε-caprolactone) (PCL)–silica hybrid sol. The membrane was composed of fibers with a mean diameter of approximately 400
nm. The hybrid fibers were nano-sized with uniform patterns throughout the fibers, in contrast to the homogeneous structure of pure PCL fibers. The tensile strengths and elastic moduli of the membranes were significantly enhanced with increasing silica content up to 40%. The surfaces of the hybrid membranes were highly hydrophilic with a water contact angle of almost zero. The hybrid membranes possessed excellent in vitro cellular responses in terms of proliferation and differentiation of pre-osteoblast cells. The in vivo animal tests not only confirmed excellent biocompatibility but also revealed bioresorbability of the membranes. These mechanical and biomedical properties make the hybrid membranes very attractive as GBR applications.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2010.03.022</identifier><identifier>PMID: 20304111</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Biocompatible Materials - pharmacology ; Bone Regeneration - drug effects ; Cell Shape - drug effects ; Cell Survival - drug effects ; Electrospinning ; Gels - chemistry ; Guided Tissue Regeneration - methods ; Hybrid membrane ; Mechanical Phenomena - drug effects ; Membranes, Artificial ; Mice ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Poly(ε-caprolactone) ; Polyesters - pharmacology ; Rats ; Rats, Sprague-Dawley ; Silica xerogel ; Silicon Dioxide - chemistry ; Skull - drug effects ; Skull - pathology ; Sol–gel synthesis ; Spectroscopy, Fourier Transform Infrared</subject><ispartof>Acta biomaterialia, 2010-09, Vol.6 (9), p.3557-3565</ispartof><rights>2010 Acta Materialia Inc.</rights><rights>2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-1c9dc6f493e30dcb4a14a90f78fd2008a5a3fd1fa20e99b683b90876496306e83</citedby><cites>FETCH-LOGICAL-c500t-1c9dc6f493e30dcb4a14a90f78fd2008a5a3fd1fa20e99b683b90876496306e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2010.03.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20304111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Eun-Jung</creatorcontrib><creatorcontrib>Teng, Shu-Hua</creatorcontrib><creatorcontrib>Jang, Tae-Sik</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Yook, Se-Won</creatorcontrib><creatorcontrib>Kim, Hyoun-Ee</creatorcontrib><creatorcontrib>Koh, Young-Hag</creatorcontrib><title>Nanostructured poly(ε-caprolactone)–silica xerogel fibrous membrane for guided bone regeneration</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>A novel fibrous membrane was developed for guided bone regeneration (GBR) through electrospinning a uniform poly(ε-caprolactone) (PCL)–silica hybrid sol. The membrane was composed of fibers with a mean diameter of approximately 400
nm. The hybrid fibers were nano-sized with uniform patterns throughout the fibers, in contrast to the homogeneous structure of pure PCL fibers. The tensile strengths and elastic moduli of the membranes were significantly enhanced with increasing silica content up to 40%. The surfaces of the hybrid membranes were highly hydrophilic with a water contact angle of almost zero. The hybrid membranes possessed excellent in vitro cellular responses in terms of proliferation and differentiation of pre-osteoblast cells. The in vivo animal tests not only confirmed excellent biocompatibility but also revealed bioresorbability of the membranes. These mechanical and biomedical properties make the hybrid membranes very attractive as GBR applications.</description><subject>Animals</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Bone Regeneration - drug effects</subject><subject>Cell Shape - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Electrospinning</subject><subject>Gels - chemistry</subject><subject>Guided Tissue Regeneration - methods</subject><subject>Hybrid membrane</subject><subject>Mechanical Phenomena - drug effects</subject><subject>Membranes, Artificial</subject><subject>Mice</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Poly(ε-caprolactone)</subject><subject>Polyesters - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Silica xerogel</subject><subject>Silicon Dioxide - chemistry</subject><subject>Skull - drug effects</subject><subject>Skull - pathology</subject><subject>Sol–gel synthesis</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUUtuFDEUtBCIhMANEOpdYNHDc9vjzyZSFEESKYINrC23_TzyqLs92N1RsuMOOQvX4BCcBI8msITVe3qqelWqIuQ1hRUFKt5vV9bNfUyrDuoJ2Aq67gk5pkqqVq6Felp3ybtWgqBH5EUpWwCmaKeek6MOGHBK6TFxn-yUypwXNy8ZfbNLw_3bnz9aZ3c5DVUhTfju1_eHEofobHOHOW1waELsc1pKM-LYZzthE1JuNkv09UVfKU3GDU6Y7RzT9JI8C3Yo-OpxnpCvHz98ubhqbz5fXl-c37RuDTC31GnvROCaIQPvem4ptxqCVMF3AMquLQueBtsBat0LxXoNSgquBQOBip2Q08Pfav3bgmU2YywOh6EarGaNpqpmoQT_L1JypaVc8z2SH5Aup1IyBrPLcbT53lAw-x7M1hx6MPseDDBTe6i0N48CSz-i_0v6E3wFnB0AWAO5jZhNcREnhz5mdLPxKf5b4Tc7U53L</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Lee, Eun-Jung</creator><creator>Teng, Shu-Hua</creator><creator>Jang, Tae-Sik</creator><creator>Wang, Peng</creator><creator>Yook, Se-Won</creator><creator>Kim, Hyoun-Ee</creator><creator>Koh, Young-Hag</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100901</creationdate><title>Nanostructured poly(ε-caprolactone)–silica xerogel fibrous membrane for guided bone regeneration</title><author>Lee, Eun-Jung ; Teng, Shu-Hua ; Jang, Tae-Sik ; Wang, Peng ; Yook, Se-Won ; Kim, Hyoun-Ee ; Koh, Young-Hag</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-1c9dc6f493e30dcb4a14a90f78fd2008a5a3fd1fa20e99b683b90876496306e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Bone Regeneration - drug effects</topic><topic>Cell Shape - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Electrospinning</topic><topic>Gels - chemistry</topic><topic>Guided Tissue Regeneration - methods</topic><topic>Hybrid membrane</topic><topic>Mechanical Phenomena - drug effects</topic><topic>Membranes, Artificial</topic><topic>Mice</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Poly(ε-caprolactone)</topic><topic>Polyesters - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Silica xerogel</topic><topic>Silicon Dioxide - chemistry</topic><topic>Skull - drug effects</topic><topic>Skull - pathology</topic><topic>Sol–gel synthesis</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Eun-Jung</creatorcontrib><creatorcontrib>Teng, Shu-Hua</creatorcontrib><creatorcontrib>Jang, Tae-Sik</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Yook, Se-Won</creatorcontrib><creatorcontrib>Kim, Hyoun-Ee</creatorcontrib><creatorcontrib>Koh, Young-Hag</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Eun-Jung</au><au>Teng, Shu-Hua</au><au>Jang, Tae-Sik</au><au>Wang, Peng</au><au>Yook, Se-Won</au><au>Kim, Hyoun-Ee</au><au>Koh, Young-Hag</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructured poly(ε-caprolactone)–silica xerogel fibrous membrane for guided bone regeneration</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>6</volume><issue>9</issue><spage>3557</spage><epage>3565</epage><pages>3557-3565</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>A novel fibrous membrane was developed for guided bone regeneration (GBR) through electrospinning a uniform poly(ε-caprolactone) (PCL)–silica hybrid sol. The membrane was composed of fibers with a mean diameter of approximately 400
nm. The hybrid fibers were nano-sized with uniform patterns throughout the fibers, in contrast to the homogeneous structure of pure PCL fibers. The tensile strengths and elastic moduli of the membranes were significantly enhanced with increasing silica content up to 40%. The surfaces of the hybrid membranes were highly hydrophilic with a water contact angle of almost zero. The hybrid membranes possessed excellent in vitro cellular responses in terms of proliferation and differentiation of pre-osteoblast cells. The in vivo animal tests not only confirmed excellent biocompatibility but also revealed bioresorbability of the membranes. These mechanical and biomedical properties make the hybrid membranes very attractive as GBR applications.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>20304111</pmid><doi>10.1016/j.actbio.2010.03.022</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2010-09, Vol.6 (9), p.3557-3565 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_918061864 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Biocompatible Materials - pharmacology Bone Regeneration - drug effects Cell Shape - drug effects Cell Survival - drug effects Electrospinning Gels - chemistry Guided Tissue Regeneration - methods Hybrid membrane Mechanical Phenomena - drug effects Membranes, Artificial Mice Microscopy, Electron, Scanning Microscopy, Electron, Transmission Nanostructures - chemistry Nanostructures - ultrastructure Osteoblasts - cytology Osteoblasts - drug effects Osteoblasts - metabolism Poly(ε-caprolactone) Polyesters - pharmacology Rats Rats, Sprague-Dawley Silica xerogel Silicon Dioxide - chemistry Skull - drug effects Skull - pathology Sol–gel synthesis Spectroscopy, Fourier Transform Infrared |
title | Nanostructured poly(ε-caprolactone)–silica xerogel fibrous membrane for guided bone regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructured%20poly(%CE%B5-caprolactone)%E2%80%93silica%20xerogel%20fibrous%20membrane%20for%20guided%20bone%20regeneration&rft.jtitle=Acta%20biomaterialia&rft.au=Lee,%20Eun-Jung&rft.date=2010-09-01&rft.volume=6&rft.issue=9&rft.spage=3557&rft.epage=3565&rft.pages=3557-3565&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2010.03.022&rft_dat=%3Cproquest_cross%3E918061864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748977544&rft_id=info:pmid/20304111&rft_els_id=S1742706110001480&rfr_iscdi=true |