Nanostructured poly(ε-caprolactone)–silica xerogel fibrous membrane for guided bone regeneration

A novel fibrous membrane was developed for guided bone regeneration (GBR) through electrospinning a uniform poly(ε-caprolactone) (PCL)–silica hybrid sol. The membrane was composed of fibers with a mean diameter of approximately 400 nm. The hybrid fibers were nano-sized with uniform patterns througho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2010-09, Vol.6 (9), p.3557-3565
Hauptverfasser: Lee, Eun-Jung, Teng, Shu-Hua, Jang, Tae-Sik, Wang, Peng, Yook, Se-Won, Kim, Hyoun-Ee, Koh, Young-Hag
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3565
container_issue 9
container_start_page 3557
container_title Acta biomaterialia
container_volume 6
creator Lee, Eun-Jung
Teng, Shu-Hua
Jang, Tae-Sik
Wang, Peng
Yook, Se-Won
Kim, Hyoun-Ee
Koh, Young-Hag
description A novel fibrous membrane was developed for guided bone regeneration (GBR) through electrospinning a uniform poly(ε-caprolactone) (PCL)–silica hybrid sol. The membrane was composed of fibers with a mean diameter of approximately 400 nm. The hybrid fibers were nano-sized with uniform patterns throughout the fibers, in contrast to the homogeneous structure of pure PCL fibers. The tensile strengths and elastic moduli of the membranes were significantly enhanced with increasing silica content up to 40%. The surfaces of the hybrid membranes were highly hydrophilic with a water contact angle of almost zero. The hybrid membranes possessed excellent in vitro cellular responses in terms of proliferation and differentiation of pre-osteoblast cells. The in vivo animal tests not only confirmed excellent biocompatibility but also revealed bioresorbability of the membranes. These mechanical and biomedical properties make the hybrid membranes very attractive as GBR applications.
doi_str_mv 10.1016/j.actbio.2010.03.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918061864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706110001480</els_id><sourcerecordid>918061864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-1c9dc6f493e30dcb4a14a90f78fd2008a5a3fd1fa20e99b683b90876496306e83</originalsourceid><addsrcrecordid>eNqFUUtuFDEUtBCIhMANEOpdYNHDc9vjzyZSFEESKYINrC23_TzyqLs92N1RsuMOOQvX4BCcBI8msITVe3qqelWqIuQ1hRUFKt5vV9bNfUyrDuoJ2Aq67gk5pkqqVq6Felp3ybtWgqBH5EUpWwCmaKeek6MOGHBK6TFxn-yUypwXNy8ZfbNLw_3bnz9aZ3c5DVUhTfju1_eHEofobHOHOW1waELsc1pKM-LYZzthE1JuNkv09UVfKU3GDU6Y7RzT9JI8C3Yo-OpxnpCvHz98ubhqbz5fXl-c37RuDTC31GnvROCaIQPvem4ptxqCVMF3AMquLQueBtsBat0LxXoNSgquBQOBip2Q08Pfav3bgmU2YywOh6EarGaNpqpmoQT_L1JypaVc8z2SH5Aup1IyBrPLcbT53lAw-x7M1hx6MPseDDBTe6i0N48CSz-i_0v6E3wFnB0AWAO5jZhNcREnhz5mdLPxKf5b4Tc7U53L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748977544</pqid></control><display><type>article</type><title>Nanostructured poly(ε-caprolactone)–silica xerogel fibrous membrane for guided bone regeneration</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Lee, Eun-Jung ; Teng, Shu-Hua ; Jang, Tae-Sik ; Wang, Peng ; Yook, Se-Won ; Kim, Hyoun-Ee ; Koh, Young-Hag</creator><creatorcontrib>Lee, Eun-Jung ; Teng, Shu-Hua ; Jang, Tae-Sik ; Wang, Peng ; Yook, Se-Won ; Kim, Hyoun-Ee ; Koh, Young-Hag</creatorcontrib><description>A novel fibrous membrane was developed for guided bone regeneration (GBR) through electrospinning a uniform poly(ε-caprolactone) (PCL)–silica hybrid sol. The membrane was composed of fibers with a mean diameter of approximately 400 nm. The hybrid fibers were nano-sized with uniform patterns throughout the fibers, in contrast to the homogeneous structure of pure PCL fibers. The tensile strengths and elastic moduli of the membranes were significantly enhanced with increasing silica content up to 40%. The surfaces of the hybrid membranes were highly hydrophilic with a water contact angle of almost zero. The hybrid membranes possessed excellent in vitro cellular responses in terms of proliferation and differentiation of pre-osteoblast cells. The in vivo animal tests not only confirmed excellent biocompatibility but also revealed bioresorbability of the membranes. These mechanical and biomedical properties make the hybrid membranes very attractive as GBR applications.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2010.03.022</identifier><identifier>PMID: 20304111</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Biocompatible Materials - pharmacology ; Bone Regeneration - drug effects ; Cell Shape - drug effects ; Cell Survival - drug effects ; Electrospinning ; Gels - chemistry ; Guided Tissue Regeneration - methods ; Hybrid membrane ; Mechanical Phenomena - drug effects ; Membranes, Artificial ; Mice ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Poly(ε-caprolactone) ; Polyesters - pharmacology ; Rats ; Rats, Sprague-Dawley ; Silica xerogel ; Silicon Dioxide - chemistry ; Skull - drug effects ; Skull - pathology ; Sol–gel synthesis ; Spectroscopy, Fourier Transform Infrared</subject><ispartof>Acta biomaterialia, 2010-09, Vol.6 (9), p.3557-3565</ispartof><rights>2010 Acta Materialia Inc.</rights><rights>2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-1c9dc6f493e30dcb4a14a90f78fd2008a5a3fd1fa20e99b683b90876496306e83</citedby><cites>FETCH-LOGICAL-c500t-1c9dc6f493e30dcb4a14a90f78fd2008a5a3fd1fa20e99b683b90876496306e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2010.03.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20304111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Eun-Jung</creatorcontrib><creatorcontrib>Teng, Shu-Hua</creatorcontrib><creatorcontrib>Jang, Tae-Sik</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Yook, Se-Won</creatorcontrib><creatorcontrib>Kim, Hyoun-Ee</creatorcontrib><creatorcontrib>Koh, Young-Hag</creatorcontrib><title>Nanostructured poly(ε-caprolactone)–silica xerogel fibrous membrane for guided bone regeneration</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>A novel fibrous membrane was developed for guided bone regeneration (GBR) through electrospinning a uniform poly(ε-caprolactone) (PCL)–silica hybrid sol. The membrane was composed of fibers with a mean diameter of approximately 400 nm. The hybrid fibers were nano-sized with uniform patterns throughout the fibers, in contrast to the homogeneous structure of pure PCL fibers. The tensile strengths and elastic moduli of the membranes were significantly enhanced with increasing silica content up to 40%. The surfaces of the hybrid membranes were highly hydrophilic with a water contact angle of almost zero. The hybrid membranes possessed excellent in vitro cellular responses in terms of proliferation and differentiation of pre-osteoblast cells. The in vivo animal tests not only confirmed excellent biocompatibility but also revealed bioresorbability of the membranes. These mechanical and biomedical properties make the hybrid membranes very attractive as GBR applications.</description><subject>Animals</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Bone Regeneration - drug effects</subject><subject>Cell Shape - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Electrospinning</subject><subject>Gels - chemistry</subject><subject>Guided Tissue Regeneration - methods</subject><subject>Hybrid membrane</subject><subject>Mechanical Phenomena - drug effects</subject><subject>Membranes, Artificial</subject><subject>Mice</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Poly(ε-caprolactone)</subject><subject>Polyesters - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Silica xerogel</subject><subject>Silicon Dioxide - chemistry</subject><subject>Skull - drug effects</subject><subject>Skull - pathology</subject><subject>Sol–gel synthesis</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUUtuFDEUtBCIhMANEOpdYNHDc9vjzyZSFEESKYINrC23_TzyqLs92N1RsuMOOQvX4BCcBI8msITVe3qqelWqIuQ1hRUFKt5vV9bNfUyrDuoJ2Aq67gk5pkqqVq6Felp3ybtWgqBH5EUpWwCmaKeek6MOGHBK6TFxn-yUypwXNy8ZfbNLw_3bnz9aZ3c5DVUhTfju1_eHEofobHOHOW1waELsc1pKM-LYZzthE1JuNkv09UVfKU3GDU6Y7RzT9JI8C3Yo-OpxnpCvHz98ubhqbz5fXl-c37RuDTC31GnvROCaIQPvem4ptxqCVMF3AMquLQueBtsBat0LxXoNSgquBQOBip2Q08Pfav3bgmU2YywOh6EarGaNpqpmoQT_L1JypaVc8z2SH5Aup1IyBrPLcbT53lAw-x7M1hx6MPseDDBTe6i0N48CSz-i_0v6E3wFnB0AWAO5jZhNcREnhz5mdLPxKf5b4Tc7U53L</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Lee, Eun-Jung</creator><creator>Teng, Shu-Hua</creator><creator>Jang, Tae-Sik</creator><creator>Wang, Peng</creator><creator>Yook, Se-Won</creator><creator>Kim, Hyoun-Ee</creator><creator>Koh, Young-Hag</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100901</creationdate><title>Nanostructured poly(ε-caprolactone)–silica xerogel fibrous membrane for guided bone regeneration</title><author>Lee, Eun-Jung ; Teng, Shu-Hua ; Jang, Tae-Sik ; Wang, Peng ; Yook, Se-Won ; Kim, Hyoun-Ee ; Koh, Young-Hag</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-1c9dc6f493e30dcb4a14a90f78fd2008a5a3fd1fa20e99b683b90876496306e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Bone Regeneration - drug effects</topic><topic>Cell Shape - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Electrospinning</topic><topic>Gels - chemistry</topic><topic>Guided Tissue Regeneration - methods</topic><topic>Hybrid membrane</topic><topic>Mechanical Phenomena - drug effects</topic><topic>Membranes, Artificial</topic><topic>Mice</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Poly(ε-caprolactone)</topic><topic>Polyesters - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Silica xerogel</topic><topic>Silicon Dioxide - chemistry</topic><topic>Skull - drug effects</topic><topic>Skull - pathology</topic><topic>Sol–gel synthesis</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Eun-Jung</creatorcontrib><creatorcontrib>Teng, Shu-Hua</creatorcontrib><creatorcontrib>Jang, Tae-Sik</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Yook, Se-Won</creatorcontrib><creatorcontrib>Kim, Hyoun-Ee</creatorcontrib><creatorcontrib>Koh, Young-Hag</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Eun-Jung</au><au>Teng, Shu-Hua</au><au>Jang, Tae-Sik</au><au>Wang, Peng</au><au>Yook, Se-Won</au><au>Kim, Hyoun-Ee</au><au>Koh, Young-Hag</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructured poly(ε-caprolactone)–silica xerogel fibrous membrane for guided bone regeneration</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>6</volume><issue>9</issue><spage>3557</spage><epage>3565</epage><pages>3557-3565</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>A novel fibrous membrane was developed for guided bone regeneration (GBR) through electrospinning a uniform poly(ε-caprolactone) (PCL)–silica hybrid sol. The membrane was composed of fibers with a mean diameter of approximately 400 nm. The hybrid fibers were nano-sized with uniform patterns throughout the fibers, in contrast to the homogeneous structure of pure PCL fibers. The tensile strengths and elastic moduli of the membranes were significantly enhanced with increasing silica content up to 40%. The surfaces of the hybrid membranes were highly hydrophilic with a water contact angle of almost zero. The hybrid membranes possessed excellent in vitro cellular responses in terms of proliferation and differentiation of pre-osteoblast cells. The in vivo animal tests not only confirmed excellent biocompatibility but also revealed bioresorbability of the membranes. These mechanical and biomedical properties make the hybrid membranes very attractive as GBR applications.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>20304111</pmid><doi>10.1016/j.actbio.2010.03.022</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2010-09, Vol.6 (9), p.3557-3565
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_918061864
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Biocompatible Materials - pharmacology
Bone Regeneration - drug effects
Cell Shape - drug effects
Cell Survival - drug effects
Electrospinning
Gels - chemistry
Guided Tissue Regeneration - methods
Hybrid membrane
Mechanical Phenomena - drug effects
Membranes, Artificial
Mice
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission
Nanostructures - chemistry
Nanostructures - ultrastructure
Osteoblasts - cytology
Osteoblasts - drug effects
Osteoblasts - metabolism
Poly(ε-caprolactone)
Polyesters - pharmacology
Rats
Rats, Sprague-Dawley
Silica xerogel
Silicon Dioxide - chemistry
Skull - drug effects
Skull - pathology
Sol–gel synthesis
Spectroscopy, Fourier Transform Infrared
title Nanostructured poly(ε-caprolactone)–silica xerogel fibrous membrane for guided bone regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructured%20poly(%CE%B5-caprolactone)%E2%80%93silica%20xerogel%20fibrous%20membrane%20for%20guided%20bone%20regeneration&rft.jtitle=Acta%20biomaterialia&rft.au=Lee,%20Eun-Jung&rft.date=2010-09-01&rft.volume=6&rft.issue=9&rft.spage=3557&rft.epage=3565&rft.pages=3557-3565&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2010.03.022&rft_dat=%3Cproquest_cross%3E918061864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748977544&rft_id=info:pmid/20304111&rft_els_id=S1742706110001480&rfr_iscdi=true