Mapping riparian condition indicators in a sub-tropical savanna environment from discrete return LiDAR data using object-based image analysis
Mapping, monitoring and managing the environmental condition of riparian zones are major focus areas for local and state governments in Australia. New remotely sensed data techniques that can provide the required mapping accuracies, complete spatial coverage and processing and mapping transferabilit...
Gespeichert in:
Veröffentlicht in: | Ecological indicators 2010-07, Vol.10 (4), p.796-807 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 807 |
---|---|
container_issue | 4 |
container_start_page | 796 |
container_title | Ecological indicators |
container_volume | 10 |
creator | Johansen, Kasper Arroyo, Lara A. Armston, John Phinn, Stuart Witte, Christian |
description | Mapping, monitoring and managing the environmental condition of riparian zones are major focus areas for local and state governments in Australia. New remotely sensed data techniques that can provide the required mapping accuracies, complete spatial coverage and processing and mapping transferability are currently being developed for use over large spatial extents. The research objective was to develop and apply an approach for mapping riparian condition indicators using object-based image analysis of airborne Light Detection and Ranging (LiDAR) data. The indicators assessed were: streambed width; riparian zone width; plant projective cover (PPC); longitudinal continuity; coverage of large trees; vegetation overhang; and stream bank stability. LiDAR data were captured on 15 July 2007 for two 5
km stretches along Mimosa Creek in Central Queensland, Australia. Field measurements of riparian vegetation structural and landform parameters were obtained between 28 May and 5 June 2007. Object-based approaches were developed for mapping each riparian condition indicator from the LiDAR data. The validation and empirical modelling results showed that the object-based approach could be used to accurately map the riparian condition indicators (
R
2
=
0.99 for streambed width,
R
2
=
0.82 for riparian zone width,
R
2
=
0.89 for PPC,
R
2
=
0.40 for bank stability). These research findings will be used in a 26,000
km mapping project assessing riparian vegetation and physical form indicators from LiDAR data in Victoria, Australia. |
doi_str_mv | 10.1016/j.ecolind.2010.01.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918061351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1470160X10000026</els_id><sourcerecordid>918061351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-16ffe1212a0ef4c4303a53ee7e85230516a6c6934e5a6261ff9025c4abd0c7803</originalsourceid><addsrcrecordid>eNqFUU1r3DAQFSWFJtv-hIJuycWbkWTL9imENP2ALYXSQG5iVh4HLV7JkeSF_Ij-52rZnJvLzDC8eTNvHmOfBawFCH29W5MNk_PDWkLpgVgDiHfsXHStrFpQ9Vmp6xYqoeHxA7tIaVcAuu_1Ofv7E-fZ-Sce3YzRoec2-MFlFzwvjM5iDjGVkiNPy7bKMcylOfGEB_QeOfmDi8HvyWc-xrDng0s2UiZewhI937gvt7_5gBn5ko6bwnZHNldbTDRwt8cn4uhxekkufWTvR5wSfXrNK_bw9f7P3fdq8-vbj7vbTWVVW-eiYxxJSCERaKxtrUBho4ha6hqpoBEatdW9qqlBLbUYxx5kY2vcDmDbDtSKXZ545xieF0rZ7MvVNE3oKSzJ9KIDLVQjCvLqv0ihaylVdzxhxZoT1MaQUqTRzLHIiy9GgDkaZXbm1ShzNMqAMMWHMndzmqOi-OAommQdeUuDi-VRZgjuDYZ_W82g8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642238430</pqid></control><display><type>article</type><title>Mapping riparian condition indicators in a sub-tropical savanna environment from discrete return LiDAR data using object-based image analysis</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Johansen, Kasper ; Arroyo, Lara A. ; Armston, John ; Phinn, Stuart ; Witte, Christian</creator><creatorcontrib>Johansen, Kasper ; Arroyo, Lara A. ; Armston, John ; Phinn, Stuart ; Witte, Christian</creatorcontrib><description>Mapping, monitoring and managing the environmental condition of riparian zones are major focus areas for local and state governments in Australia. New remotely sensed data techniques that can provide the required mapping accuracies, complete spatial coverage and processing and mapping transferability are currently being developed for use over large spatial extents. The research objective was to develop and apply an approach for mapping riparian condition indicators using object-based image analysis of airborne Light Detection and Ranging (LiDAR) data. The indicators assessed were: streambed width; riparian zone width; plant projective cover (PPC); longitudinal continuity; coverage of large trees; vegetation overhang; and stream bank stability. LiDAR data were captured on 15 July 2007 for two 5
km stretches along Mimosa Creek in Central Queensland, Australia. Field measurements of riparian vegetation structural and landform parameters were obtained between 28 May and 5 June 2007. Object-based approaches were developed for mapping each riparian condition indicator from the LiDAR data. The validation and empirical modelling results showed that the object-based approach could be used to accurately map the riparian condition indicators (
R
2
=
0.99 for streambed width,
R
2
=
0.82 for riparian zone width,
R
2
=
0.89 for PPC,
R
2
=
0.40 for bank stability). These research findings will be used in a 26,000
km mapping project assessing riparian vegetation and physical form indicators from LiDAR data in Victoria, Australia.</description><identifier>ISSN: 1470-160X</identifier><identifier>EISSN: 1872-7034</identifier><identifier>DOI: 10.1016/j.ecolind.2010.01.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Airborne LiDAR ; Environmental indicators ; Indicators ; Lidar ; Mapping ; Mathematical models ; Object-based image analysis ; Remote sensing ; Riparian land ; Riparian zone ; Stability ; Streambeds ; Vegetation</subject><ispartof>Ecological indicators, 2010-07, Vol.10 (4), p.796-807</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-16ffe1212a0ef4c4303a53ee7e85230516a6c6934e5a6261ff9025c4abd0c7803</citedby><cites>FETCH-LOGICAL-c374t-16ffe1212a0ef4c4303a53ee7e85230516a6c6934e5a6261ff9025c4abd0c7803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ecolind.2010.01.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Johansen, Kasper</creatorcontrib><creatorcontrib>Arroyo, Lara A.</creatorcontrib><creatorcontrib>Armston, John</creatorcontrib><creatorcontrib>Phinn, Stuart</creatorcontrib><creatorcontrib>Witte, Christian</creatorcontrib><title>Mapping riparian condition indicators in a sub-tropical savanna environment from discrete return LiDAR data using object-based image analysis</title><title>Ecological indicators</title><description>Mapping, monitoring and managing the environmental condition of riparian zones are major focus areas for local and state governments in Australia. New remotely sensed data techniques that can provide the required mapping accuracies, complete spatial coverage and processing and mapping transferability are currently being developed for use over large spatial extents. The research objective was to develop and apply an approach for mapping riparian condition indicators using object-based image analysis of airborne Light Detection and Ranging (LiDAR) data. The indicators assessed were: streambed width; riparian zone width; plant projective cover (PPC); longitudinal continuity; coverage of large trees; vegetation overhang; and stream bank stability. LiDAR data were captured on 15 July 2007 for two 5
km stretches along Mimosa Creek in Central Queensland, Australia. Field measurements of riparian vegetation structural and landform parameters were obtained between 28 May and 5 June 2007. Object-based approaches were developed for mapping each riparian condition indicator from the LiDAR data. The validation and empirical modelling results showed that the object-based approach could be used to accurately map the riparian condition indicators (
R
2
=
0.99 for streambed width,
R
2
=
0.82 for riparian zone width,
R
2
=
0.89 for PPC,
R
2
=
0.40 for bank stability). These research findings will be used in a 26,000
km mapping project assessing riparian vegetation and physical form indicators from LiDAR data in Victoria, Australia.</description><subject>Airborne LiDAR</subject><subject>Environmental indicators</subject><subject>Indicators</subject><subject>Lidar</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Object-based image analysis</subject><subject>Remote sensing</subject><subject>Riparian land</subject><subject>Riparian zone</subject><subject>Stability</subject><subject>Streambeds</subject><subject>Vegetation</subject><issn>1470-160X</issn><issn>1872-7034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUU1r3DAQFSWFJtv-hIJuycWbkWTL9imENP2ALYXSQG5iVh4HLV7JkeSF_Ij-52rZnJvLzDC8eTNvHmOfBawFCH29W5MNk_PDWkLpgVgDiHfsXHStrFpQ9Vmp6xYqoeHxA7tIaVcAuu_1Ofv7E-fZ-Sce3YzRoec2-MFlFzwvjM5iDjGVkiNPy7bKMcylOfGEB_QeOfmDi8HvyWc-xrDng0s2UiZewhI937gvt7_5gBn5ko6bwnZHNldbTDRwt8cn4uhxekkufWTvR5wSfXrNK_bw9f7P3fdq8-vbj7vbTWVVW-eiYxxJSCERaKxtrUBho4ha6hqpoBEatdW9qqlBLbUYxx5kY2vcDmDbDtSKXZ545xieF0rZ7MvVNE3oKSzJ9KIDLVQjCvLqv0ihaylVdzxhxZoT1MaQUqTRzLHIiy9GgDkaZXbm1ShzNMqAMMWHMndzmqOi-OAommQdeUuDi-VRZgjuDYZ_W82g8g</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Johansen, Kasper</creator><creator>Arroyo, Lara A.</creator><creator>Armston, John</creator><creator>Phinn, Stuart</creator><creator>Witte, Christian</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7SN</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20100701</creationdate><title>Mapping riparian condition indicators in a sub-tropical savanna environment from discrete return LiDAR data using object-based image analysis</title><author>Johansen, Kasper ; Arroyo, Lara A. ; Armston, John ; Phinn, Stuart ; Witte, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-16ffe1212a0ef4c4303a53ee7e85230516a6c6934e5a6261ff9025c4abd0c7803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Airborne LiDAR</topic><topic>Environmental indicators</topic><topic>Indicators</topic><topic>Lidar</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Object-based image analysis</topic><topic>Remote sensing</topic><topic>Riparian land</topic><topic>Riparian zone</topic><topic>Stability</topic><topic>Streambeds</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johansen, Kasper</creatorcontrib><creatorcontrib>Arroyo, Lara A.</creatorcontrib><creatorcontrib>Armston, John</creatorcontrib><creatorcontrib>Phinn, Stuart</creatorcontrib><creatorcontrib>Witte, Christian</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Ecological indicators</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johansen, Kasper</au><au>Arroyo, Lara A.</au><au>Armston, John</au><au>Phinn, Stuart</au><au>Witte, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping riparian condition indicators in a sub-tropical savanna environment from discrete return LiDAR data using object-based image analysis</atitle><jtitle>Ecological indicators</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>10</volume><issue>4</issue><spage>796</spage><epage>807</epage><pages>796-807</pages><issn>1470-160X</issn><eissn>1872-7034</eissn><abstract>Mapping, monitoring and managing the environmental condition of riparian zones are major focus areas for local and state governments in Australia. New remotely sensed data techniques that can provide the required mapping accuracies, complete spatial coverage and processing and mapping transferability are currently being developed for use over large spatial extents. The research objective was to develop and apply an approach for mapping riparian condition indicators using object-based image analysis of airborne Light Detection and Ranging (LiDAR) data. The indicators assessed were: streambed width; riparian zone width; plant projective cover (PPC); longitudinal continuity; coverage of large trees; vegetation overhang; and stream bank stability. LiDAR data were captured on 15 July 2007 for two 5
km stretches along Mimosa Creek in Central Queensland, Australia. Field measurements of riparian vegetation structural and landform parameters were obtained between 28 May and 5 June 2007. Object-based approaches were developed for mapping each riparian condition indicator from the LiDAR data. The validation and empirical modelling results showed that the object-based approach could be used to accurately map the riparian condition indicators (
R
2
=
0.99 for streambed width,
R
2
=
0.82 for riparian zone width,
R
2
=
0.89 for PPC,
R
2
=
0.40 for bank stability). These research findings will be used in a 26,000
km mapping project assessing riparian vegetation and physical form indicators from LiDAR data in Victoria, Australia.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ecolind.2010.01.001</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1470-160X |
ispartof | Ecological indicators, 2010-07, Vol.10 (4), p.796-807 |
issn | 1470-160X 1872-7034 |
language | eng |
recordid | cdi_proquest_miscellaneous_918061351 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Airborne LiDAR Environmental indicators Indicators Lidar Mapping Mathematical models Object-based image analysis Remote sensing Riparian land Riparian zone Stability Streambeds Vegetation |
title | Mapping riparian condition indicators in a sub-tropical savanna environment from discrete return LiDAR data using object-based image analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A36%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20riparian%20condition%20indicators%20in%20a%20sub-tropical%20savanna%20environment%20from%20discrete%20return%20LiDAR%20data%20using%20object-based%20image%20analysis&rft.jtitle=Ecological%20indicators&rft.au=Johansen,%20Kasper&rft.date=2010-07-01&rft.volume=10&rft.issue=4&rft.spage=796&rft.epage=807&rft.pages=796-807&rft.issn=1470-160X&rft.eissn=1872-7034&rft_id=info:doi/10.1016/j.ecolind.2010.01.001&rft_dat=%3Cproquest_cross%3E918061351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642238430&rft_id=info:pmid/&rft_els_id=S1470160X10000026&rfr_iscdi=true |