Mapping riparian condition indicators in a sub-tropical savanna environment from discrete return LiDAR data using object-based image analysis

Mapping, monitoring and managing the environmental condition of riparian zones are major focus areas for local and state governments in Australia. New remotely sensed data techniques that can provide the required mapping accuracies, complete spatial coverage and processing and mapping transferabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological indicators 2010-07, Vol.10 (4), p.796-807
Hauptverfasser: Johansen, Kasper, Arroyo, Lara A., Armston, John, Phinn, Stuart, Witte, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 807
container_issue 4
container_start_page 796
container_title Ecological indicators
container_volume 10
creator Johansen, Kasper
Arroyo, Lara A.
Armston, John
Phinn, Stuart
Witte, Christian
description Mapping, monitoring and managing the environmental condition of riparian zones are major focus areas for local and state governments in Australia. New remotely sensed data techniques that can provide the required mapping accuracies, complete spatial coverage and processing and mapping transferability are currently being developed for use over large spatial extents. The research objective was to develop and apply an approach for mapping riparian condition indicators using object-based image analysis of airborne Light Detection and Ranging (LiDAR) data. The indicators assessed were: streambed width; riparian zone width; plant projective cover (PPC); longitudinal continuity; coverage of large trees; vegetation overhang; and stream bank stability. LiDAR data were captured on 15 July 2007 for two 5 km stretches along Mimosa Creek in Central Queensland, Australia. Field measurements of riparian vegetation structural and landform parameters were obtained between 28 May and 5 June 2007. Object-based approaches were developed for mapping each riparian condition indicator from the LiDAR data. The validation and empirical modelling results showed that the object-based approach could be used to accurately map the riparian condition indicators ( R 2 = 0.99 for streambed width, R 2 = 0.82 for riparian zone width, R 2 = 0.89 for PPC, R 2 = 0.40 for bank stability). These research findings will be used in a 26,000 km mapping project assessing riparian vegetation and physical form indicators from LiDAR data in Victoria, Australia.
doi_str_mv 10.1016/j.ecolind.2010.01.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918061351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1470160X10000026</els_id><sourcerecordid>918061351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-16ffe1212a0ef4c4303a53ee7e85230516a6c6934e5a6261ff9025c4abd0c7803</originalsourceid><addsrcrecordid>eNqFUU1r3DAQFSWFJtv-hIJuycWbkWTL9imENP2ALYXSQG5iVh4HLV7JkeSF_Ij-52rZnJvLzDC8eTNvHmOfBawFCH29W5MNk_PDWkLpgVgDiHfsXHStrFpQ9Vmp6xYqoeHxA7tIaVcAuu_1Ofv7E-fZ-Sce3YzRoec2-MFlFzwvjM5iDjGVkiNPy7bKMcylOfGEB_QeOfmDi8HvyWc-xrDng0s2UiZewhI937gvt7_5gBn5ko6bwnZHNldbTDRwt8cn4uhxekkufWTvR5wSfXrNK_bw9f7P3fdq8-vbj7vbTWVVW-eiYxxJSCERaKxtrUBho4ha6hqpoBEatdW9qqlBLbUYxx5kY2vcDmDbDtSKXZ545xieF0rZ7MvVNE3oKSzJ9KIDLVQjCvLqv0ihaylVdzxhxZoT1MaQUqTRzLHIiy9GgDkaZXbm1ShzNMqAMMWHMndzmqOi-OAommQdeUuDi-VRZgjuDYZ_W82g8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642238430</pqid></control><display><type>article</type><title>Mapping riparian condition indicators in a sub-tropical savanna environment from discrete return LiDAR data using object-based image analysis</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Johansen, Kasper ; Arroyo, Lara A. ; Armston, John ; Phinn, Stuart ; Witte, Christian</creator><creatorcontrib>Johansen, Kasper ; Arroyo, Lara A. ; Armston, John ; Phinn, Stuart ; Witte, Christian</creatorcontrib><description>Mapping, monitoring and managing the environmental condition of riparian zones are major focus areas for local and state governments in Australia. New remotely sensed data techniques that can provide the required mapping accuracies, complete spatial coverage and processing and mapping transferability are currently being developed for use over large spatial extents. The research objective was to develop and apply an approach for mapping riparian condition indicators using object-based image analysis of airborne Light Detection and Ranging (LiDAR) data. The indicators assessed were: streambed width; riparian zone width; plant projective cover (PPC); longitudinal continuity; coverage of large trees; vegetation overhang; and stream bank stability. LiDAR data were captured on 15 July 2007 for two 5 km stretches along Mimosa Creek in Central Queensland, Australia. Field measurements of riparian vegetation structural and landform parameters were obtained between 28 May and 5 June 2007. Object-based approaches were developed for mapping each riparian condition indicator from the LiDAR data. The validation and empirical modelling results showed that the object-based approach could be used to accurately map the riparian condition indicators ( R 2 = 0.99 for streambed width, R 2 = 0.82 for riparian zone width, R 2 = 0.89 for PPC, R 2 = 0.40 for bank stability). These research findings will be used in a 26,000 km mapping project assessing riparian vegetation and physical form indicators from LiDAR data in Victoria, Australia.</description><identifier>ISSN: 1470-160X</identifier><identifier>EISSN: 1872-7034</identifier><identifier>DOI: 10.1016/j.ecolind.2010.01.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Airborne LiDAR ; Environmental indicators ; Indicators ; Lidar ; Mapping ; Mathematical models ; Object-based image analysis ; Remote sensing ; Riparian land ; Riparian zone ; Stability ; Streambeds ; Vegetation</subject><ispartof>Ecological indicators, 2010-07, Vol.10 (4), p.796-807</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-16ffe1212a0ef4c4303a53ee7e85230516a6c6934e5a6261ff9025c4abd0c7803</citedby><cites>FETCH-LOGICAL-c374t-16ffe1212a0ef4c4303a53ee7e85230516a6c6934e5a6261ff9025c4abd0c7803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ecolind.2010.01.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Johansen, Kasper</creatorcontrib><creatorcontrib>Arroyo, Lara A.</creatorcontrib><creatorcontrib>Armston, John</creatorcontrib><creatorcontrib>Phinn, Stuart</creatorcontrib><creatorcontrib>Witte, Christian</creatorcontrib><title>Mapping riparian condition indicators in a sub-tropical savanna environment from discrete return LiDAR data using object-based image analysis</title><title>Ecological indicators</title><description>Mapping, monitoring and managing the environmental condition of riparian zones are major focus areas for local and state governments in Australia. New remotely sensed data techniques that can provide the required mapping accuracies, complete spatial coverage and processing and mapping transferability are currently being developed for use over large spatial extents. The research objective was to develop and apply an approach for mapping riparian condition indicators using object-based image analysis of airborne Light Detection and Ranging (LiDAR) data. The indicators assessed were: streambed width; riparian zone width; plant projective cover (PPC); longitudinal continuity; coverage of large trees; vegetation overhang; and stream bank stability. LiDAR data were captured on 15 July 2007 for two 5 km stretches along Mimosa Creek in Central Queensland, Australia. Field measurements of riparian vegetation structural and landform parameters were obtained between 28 May and 5 June 2007. Object-based approaches were developed for mapping each riparian condition indicator from the LiDAR data. The validation and empirical modelling results showed that the object-based approach could be used to accurately map the riparian condition indicators ( R 2 = 0.99 for streambed width, R 2 = 0.82 for riparian zone width, R 2 = 0.89 for PPC, R 2 = 0.40 for bank stability). These research findings will be used in a 26,000 km mapping project assessing riparian vegetation and physical form indicators from LiDAR data in Victoria, Australia.</description><subject>Airborne LiDAR</subject><subject>Environmental indicators</subject><subject>Indicators</subject><subject>Lidar</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Object-based image analysis</subject><subject>Remote sensing</subject><subject>Riparian land</subject><subject>Riparian zone</subject><subject>Stability</subject><subject>Streambeds</subject><subject>Vegetation</subject><issn>1470-160X</issn><issn>1872-7034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUU1r3DAQFSWFJtv-hIJuycWbkWTL9imENP2ALYXSQG5iVh4HLV7JkeSF_Ij-52rZnJvLzDC8eTNvHmOfBawFCH29W5MNk_PDWkLpgVgDiHfsXHStrFpQ9Vmp6xYqoeHxA7tIaVcAuu_1Ofv7E-fZ-Sce3YzRoec2-MFlFzwvjM5iDjGVkiNPy7bKMcylOfGEB_QeOfmDi8HvyWc-xrDng0s2UiZewhI937gvt7_5gBn5ko6bwnZHNldbTDRwt8cn4uhxekkufWTvR5wSfXrNK_bw9f7P3fdq8-vbj7vbTWVVW-eiYxxJSCERaKxtrUBho4ha6hqpoBEatdW9qqlBLbUYxx5kY2vcDmDbDtSKXZ545xieF0rZ7MvVNE3oKSzJ9KIDLVQjCvLqv0ihaylVdzxhxZoT1MaQUqTRzLHIiy9GgDkaZXbm1ShzNMqAMMWHMndzmqOi-OAommQdeUuDi-VRZgjuDYZ_W82g8g</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Johansen, Kasper</creator><creator>Arroyo, Lara A.</creator><creator>Armston, John</creator><creator>Phinn, Stuart</creator><creator>Witte, Christian</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7SN</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20100701</creationdate><title>Mapping riparian condition indicators in a sub-tropical savanna environment from discrete return LiDAR data using object-based image analysis</title><author>Johansen, Kasper ; Arroyo, Lara A. ; Armston, John ; Phinn, Stuart ; Witte, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-16ffe1212a0ef4c4303a53ee7e85230516a6c6934e5a6261ff9025c4abd0c7803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Airborne LiDAR</topic><topic>Environmental indicators</topic><topic>Indicators</topic><topic>Lidar</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Object-based image analysis</topic><topic>Remote sensing</topic><topic>Riparian land</topic><topic>Riparian zone</topic><topic>Stability</topic><topic>Streambeds</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johansen, Kasper</creatorcontrib><creatorcontrib>Arroyo, Lara A.</creatorcontrib><creatorcontrib>Armston, John</creatorcontrib><creatorcontrib>Phinn, Stuart</creatorcontrib><creatorcontrib>Witte, Christian</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Ecological indicators</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johansen, Kasper</au><au>Arroyo, Lara A.</au><au>Armston, John</au><au>Phinn, Stuart</au><au>Witte, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping riparian condition indicators in a sub-tropical savanna environment from discrete return LiDAR data using object-based image analysis</atitle><jtitle>Ecological indicators</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>10</volume><issue>4</issue><spage>796</spage><epage>807</epage><pages>796-807</pages><issn>1470-160X</issn><eissn>1872-7034</eissn><abstract>Mapping, monitoring and managing the environmental condition of riparian zones are major focus areas for local and state governments in Australia. New remotely sensed data techniques that can provide the required mapping accuracies, complete spatial coverage and processing and mapping transferability are currently being developed for use over large spatial extents. The research objective was to develop and apply an approach for mapping riparian condition indicators using object-based image analysis of airborne Light Detection and Ranging (LiDAR) data. The indicators assessed were: streambed width; riparian zone width; plant projective cover (PPC); longitudinal continuity; coverage of large trees; vegetation overhang; and stream bank stability. LiDAR data were captured on 15 July 2007 for two 5 km stretches along Mimosa Creek in Central Queensland, Australia. Field measurements of riparian vegetation structural and landform parameters were obtained between 28 May and 5 June 2007. Object-based approaches were developed for mapping each riparian condition indicator from the LiDAR data. The validation and empirical modelling results showed that the object-based approach could be used to accurately map the riparian condition indicators ( R 2 = 0.99 for streambed width, R 2 = 0.82 for riparian zone width, R 2 = 0.89 for PPC, R 2 = 0.40 for bank stability). These research findings will be used in a 26,000 km mapping project assessing riparian vegetation and physical form indicators from LiDAR data in Victoria, Australia.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ecolind.2010.01.001</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1470-160X
ispartof Ecological indicators, 2010-07, Vol.10 (4), p.796-807
issn 1470-160X
1872-7034
language eng
recordid cdi_proquest_miscellaneous_918061351
source ScienceDirect Journals (5 years ago - present)
subjects Airborne LiDAR
Environmental indicators
Indicators
Lidar
Mapping
Mathematical models
Object-based image analysis
Remote sensing
Riparian land
Riparian zone
Stability
Streambeds
Vegetation
title Mapping riparian condition indicators in a sub-tropical savanna environment from discrete return LiDAR data using object-based image analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A36%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20riparian%20condition%20indicators%20in%20a%20sub-tropical%20savanna%20environment%20from%20discrete%20return%20LiDAR%20data%20using%20object-based%20image%20analysis&rft.jtitle=Ecological%20indicators&rft.au=Johansen,%20Kasper&rft.date=2010-07-01&rft.volume=10&rft.issue=4&rft.spage=796&rft.epage=807&rft.pages=796-807&rft.issn=1470-160X&rft.eissn=1872-7034&rft_id=info:doi/10.1016/j.ecolind.2010.01.001&rft_dat=%3Cproquest_cross%3E918061351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642238430&rft_id=info:pmid/&rft_els_id=S1470160X10000026&rfr_iscdi=true