In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen–hydroxyapatite layered scaffolds

Integrated, layered osteochondral (OC) composite materials and/or engineered OC grafts are considered as promising strategies for the treatment of OC damage. A novel biomimetic collagen–hydroxyapatite (COL–HA) OC scaffold with different integrated layers has been generated by freeze-drying. The capa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2011-11, Vol.7 (11), p.3999-4006
Hauptverfasser: Zhou, Jiaan, Xu, Caixia, Wu, Gang, Cao, Xiaodong, Zhang, Liangming, Zhai, Zhichen, Zheng, Zhiwen, Chen, Xiaofeng, Wang, Yingjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4006
container_issue 11
container_start_page 3999
container_title Acta biomaterialia
container_volume 7
creator Zhou, Jiaan
Xu, Caixia
Wu, Gang
Cao, Xiaodong
Zhang, Liangming
Zhai, Zhichen
Zheng, Zhiwen
Chen, Xiaofeng
Wang, Yingjun
description Integrated, layered osteochondral (OC) composite materials and/or engineered OC grafts are considered as promising strategies for the treatment of OC damage. A novel biomimetic collagen–hydroxyapatite (COL–HA) OC scaffold with different integrated layers has been generated by freeze-drying. The capacity of the upper COL layer and the lower COL/HA layer to promote the growth and differentiation of human mesenchymal stem cells (hMSCs) into chondrocytes and osteoblasts respectively was evaluated. Cell viability and proliferation on COL and COL/HA scaffolds were assessed by the MTT test. The chondrogenic differentiation of hMSCs on both scaffolds was evaluated by glucosaminoglycan (GAG) quantification, alcian blue staining, type II collagen immunocytochemistry assay and real-time polymerase chain reaction in chondrogenic medium for 21 days. Osteogenic differentiation was evaluated by alkaline phosphatase activity assay, type I collagen immunocytochemistry staining, alizarin S staining and mRNA expression of osteogenic gene for 14 days in osteogenic medium. The results indicated that hMSCs on both COL and COL/HA scaffolds were viable and able to proliferate over time. The COL layer was more efficient in inducing hMSC chondrogenic differentiation than the COL/HA layer, while the COL/HA layer possessed the superiority on promoting hMSC osteogenic induction over either COL layer or pure HA. In conclusion, the layered OC composite materials can effectively promote cartilage and bone tissue generation in vitro and are potentially usable for OC tissue engineering.
doi_str_mv 10.1016/j.actbio.2011.06.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918060088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706111002868</els_id><sourcerecordid>1671361665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-e811bfce530f84096d2177b5dcf8dc19fa4c05c9f1f233708d6ed58a9b9b3b0a3</originalsourceid><addsrcrecordid>eNqFkctu1DAUhiMEoqXwBgi8g82Ec3KxnQ0SqgpUqsQCurYc-7jjURIPdmYguz4CEm_Ik-DRlC7Lyl585z-XryheIpQIyN9tSm3m3oeyAsQSeAkNPCpOUQq5Ei2Xj_NfNNVKAMeT4llKG4BaYiWfFicVilZA3Z4Wvy4ntvdzDOyGJop69mFiwbGQZgpmHSYb9cCsd44iTbO_B9a7UU9s1DGGH2ykRJNZL2Nmc-HIDA1DYn5iU9jTwEwYBp0b_Ln9vV5sDD8Xvc1JM7FBLznYsmS0c2Gw6XnxxOkh0Yu796y4_njx7fzz6urLp8vzD1cr0yKfVyQRe2eorcHJBjpu806ib61x0hrsnG4MtKZz6Kq6FiAtJ9tK3fVdX_eg67PizTF3G8P3HaVZjT4dxtYThV1SHUrgAFL-l5QdrxoQVZvJtw-SyAXWHDk_oM0RNTGkFMmpbfT5motCUAe_aqOOftXBrwKust9c9uquw64fyd4X_ROagddHwOmg9E30SV1_zQktAIJEUWfi_ZGgfN29p6iS8dkeWR_JzMoG__AMfwFFG8ZK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671361665</pqid></control><display><type>article</type><title>In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen–hydroxyapatite layered scaffolds</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Zhou, Jiaan ; Xu, Caixia ; Wu, Gang ; Cao, Xiaodong ; Zhang, Liangming ; Zhai, Zhichen ; Zheng, Zhiwen ; Chen, Xiaofeng ; Wang, Yingjun</creator><creatorcontrib>Zhou, Jiaan ; Xu, Caixia ; Wu, Gang ; Cao, Xiaodong ; Zhang, Liangming ; Zhai, Zhichen ; Zheng, Zhiwen ; Chen, Xiaofeng ; Wang, Yingjun</creatorcontrib><description>Integrated, layered osteochondral (OC) composite materials and/or engineered OC grafts are considered as promising strategies for the treatment of OC damage. A novel biomimetic collagen–hydroxyapatite (COL–HA) OC scaffold with different integrated layers has been generated by freeze-drying. The capacity of the upper COL layer and the lower COL/HA layer to promote the growth and differentiation of human mesenchymal stem cells (hMSCs) into chondrocytes and osteoblasts respectively was evaluated. Cell viability and proliferation on COL and COL/HA scaffolds were assessed by the MTT test. The chondrogenic differentiation of hMSCs on both scaffolds was evaluated by glucosaminoglycan (GAG) quantification, alcian blue staining, type II collagen immunocytochemistry assay and real-time polymerase chain reaction in chondrogenic medium for 21 days. Osteogenic differentiation was evaluated by alkaline phosphatase activity assay, type I collagen immunocytochemistry staining, alizarin S staining and mRNA expression of osteogenic gene for 14 days in osteogenic medium. The results indicated that hMSCs on both COL and COL/HA scaffolds were viable and able to proliferate over time. The COL layer was more efficient in inducing hMSC chondrogenic differentiation than the COL/HA layer, while the COL/HA layer possessed the superiority on promoting hMSC osteogenic induction over either COL layer or pure HA. In conclusion, the layered OC composite materials can effectively promote cartilage and bone tissue generation in vitro and are potentially usable for OC tissue engineering.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2011.06.040</identifier><identifier>PMID: 21757035</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adult ; alizarin ; alkaline phosphatase ; Antigens, Differentiation - biosynthesis ; Biocompatibility ; Biomedical materials ; biomimetics ; bone formation ; Bone Regeneration ; cartilage ; Cartilage tissue engineering ; Cell Differentiation ; cell viability ; Cells, Cultured ; chondrocytes ; Chondrocytes - cytology ; Chondrocytes - metabolism ; Chondrogenesis ; Collagen ; Collagen - chemistry ; composite materials ; Differentiation ; Durapatite - chemistry ; Female ; freeze drying ; gene expression ; genes ; Human ; Humans ; Hydroxyapatite ; immunocytochemistry ; In vitro testing ; Male ; Mesenchymal stem cell ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - metabolism ; messenger RNA ; osteoblasts ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Osteochondral differentiation ; Osteogenesis ; quantitative polymerase chain reaction ; Scaffolds ; Staining ; stem cells ; tissue engineering ; Tissue Scaffolds</subject><ispartof>Acta biomaterialia, 2011-11, Vol.7 (11), p.3999-4006</ispartof><rights>2011 Acta Materialia Inc.</rights><rights>Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-e811bfce530f84096d2177b5dcf8dc19fa4c05c9f1f233708d6ed58a9b9b3b0a3</citedby><cites>FETCH-LOGICAL-c516t-e811bfce530f84096d2177b5dcf8dc19fa4c05c9f1f233708d6ed58a9b9b3b0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2011.06.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21757035$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Jiaan</creatorcontrib><creatorcontrib>Xu, Caixia</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Cao, Xiaodong</creatorcontrib><creatorcontrib>Zhang, Liangming</creatorcontrib><creatorcontrib>Zhai, Zhichen</creatorcontrib><creatorcontrib>Zheng, Zhiwen</creatorcontrib><creatorcontrib>Chen, Xiaofeng</creatorcontrib><creatorcontrib>Wang, Yingjun</creatorcontrib><title>In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen–hydroxyapatite layered scaffolds</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Integrated, layered osteochondral (OC) composite materials and/or engineered OC grafts are considered as promising strategies for the treatment of OC damage. A novel biomimetic collagen–hydroxyapatite (COL–HA) OC scaffold with different integrated layers has been generated by freeze-drying. The capacity of the upper COL layer and the lower COL/HA layer to promote the growth and differentiation of human mesenchymal stem cells (hMSCs) into chondrocytes and osteoblasts respectively was evaluated. Cell viability and proliferation on COL and COL/HA scaffolds were assessed by the MTT test. The chondrogenic differentiation of hMSCs on both scaffolds was evaluated by glucosaminoglycan (GAG) quantification, alcian blue staining, type II collagen immunocytochemistry assay and real-time polymerase chain reaction in chondrogenic medium for 21 days. Osteogenic differentiation was evaluated by alkaline phosphatase activity assay, type I collagen immunocytochemistry staining, alizarin S staining and mRNA expression of osteogenic gene for 14 days in osteogenic medium. The results indicated that hMSCs on both COL and COL/HA scaffolds were viable and able to proliferate over time. The COL layer was more efficient in inducing hMSC chondrogenic differentiation than the COL/HA layer, while the COL/HA layer possessed the superiority on promoting hMSC osteogenic induction over either COL layer or pure HA. In conclusion, the layered OC composite materials can effectively promote cartilage and bone tissue generation in vitro and are potentially usable for OC tissue engineering.</description><subject>Adult</subject><subject>alizarin</subject><subject>alkaline phosphatase</subject><subject>Antigens, Differentiation - biosynthesis</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>biomimetics</subject><subject>bone formation</subject><subject>Bone Regeneration</subject><subject>cartilage</subject><subject>Cartilage tissue engineering</subject><subject>Cell Differentiation</subject><subject>cell viability</subject><subject>Cells, Cultured</subject><subject>chondrocytes</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - metabolism</subject><subject>Chondrogenesis</subject><subject>Collagen</subject><subject>Collagen - chemistry</subject><subject>composite materials</subject><subject>Differentiation</subject><subject>Durapatite - chemistry</subject><subject>Female</subject><subject>freeze drying</subject><subject>gene expression</subject><subject>genes</subject><subject>Human</subject><subject>Humans</subject><subject>Hydroxyapatite</subject><subject>immunocytochemistry</subject><subject>In vitro testing</subject><subject>Male</subject><subject>Mesenchymal stem cell</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>messenger RNA</subject><subject>osteoblasts</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Osteochondral differentiation</subject><subject>Osteogenesis</subject><subject>quantitative polymerase chain reaction</subject><subject>Scaffolds</subject><subject>Staining</subject><subject>stem cells</subject><subject>tissue engineering</subject><subject>Tissue Scaffolds</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhiMEoqXwBgi8g82Ec3KxnQ0SqgpUqsQCurYc-7jjURIPdmYguz4CEm_Ik-DRlC7Lyl585z-XryheIpQIyN9tSm3m3oeyAsQSeAkNPCpOUQq5Ei2Xj_NfNNVKAMeT4llKG4BaYiWfFicVilZA3Z4Wvy4ntvdzDOyGJop69mFiwbGQZgpmHSYb9cCsd44iTbO_B9a7UU9s1DGGH2ykRJNZL2Nmc-HIDA1DYn5iU9jTwEwYBp0b_Ln9vV5sDD8Xvc1JM7FBLznYsmS0c2Gw6XnxxOkh0Yu796y4_njx7fzz6urLp8vzD1cr0yKfVyQRe2eorcHJBjpu806ib61x0hrsnG4MtKZz6Kq6FiAtJ9tK3fVdX_eg67PizTF3G8P3HaVZjT4dxtYThV1SHUrgAFL-l5QdrxoQVZvJtw-SyAXWHDk_oM0RNTGkFMmpbfT5motCUAe_aqOOftXBrwKust9c9uquw64fyd4X_ROagddHwOmg9E30SV1_zQktAIJEUWfi_ZGgfN29p6iS8dkeWR_JzMoG__AMfwFFG8ZK</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Zhou, Jiaan</creator><creator>Xu, Caixia</creator><creator>Wu, Gang</creator><creator>Cao, Xiaodong</creator><creator>Zhang, Liangming</creator><creator>Zhai, Zhichen</creator><creator>Zheng, Zhiwen</creator><creator>Chen, Xiaofeng</creator><creator>Wang, Yingjun</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20111101</creationdate><title>In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen–hydroxyapatite layered scaffolds</title><author>Zhou, Jiaan ; Xu, Caixia ; Wu, Gang ; Cao, Xiaodong ; Zhang, Liangming ; Zhai, Zhichen ; Zheng, Zhiwen ; Chen, Xiaofeng ; Wang, Yingjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-e811bfce530f84096d2177b5dcf8dc19fa4c05c9f1f233708d6ed58a9b9b3b0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adult</topic><topic>alizarin</topic><topic>alkaline phosphatase</topic><topic>Antigens, Differentiation - biosynthesis</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>biomimetics</topic><topic>bone formation</topic><topic>Bone Regeneration</topic><topic>cartilage</topic><topic>Cartilage tissue engineering</topic><topic>Cell Differentiation</topic><topic>cell viability</topic><topic>Cells, Cultured</topic><topic>chondrocytes</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - metabolism</topic><topic>Chondrogenesis</topic><topic>Collagen</topic><topic>Collagen - chemistry</topic><topic>composite materials</topic><topic>Differentiation</topic><topic>Durapatite - chemistry</topic><topic>Female</topic><topic>freeze drying</topic><topic>gene expression</topic><topic>genes</topic><topic>Human</topic><topic>Humans</topic><topic>Hydroxyapatite</topic><topic>immunocytochemistry</topic><topic>In vitro testing</topic><topic>Male</topic><topic>Mesenchymal stem cell</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>messenger RNA</topic><topic>osteoblasts</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Osteochondral differentiation</topic><topic>Osteogenesis</topic><topic>quantitative polymerase chain reaction</topic><topic>Scaffolds</topic><topic>Staining</topic><topic>stem cells</topic><topic>tissue engineering</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jiaan</creatorcontrib><creatorcontrib>Xu, Caixia</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Cao, Xiaodong</creatorcontrib><creatorcontrib>Zhang, Liangming</creatorcontrib><creatorcontrib>Zhai, Zhichen</creatorcontrib><creatorcontrib>Zheng, Zhiwen</creatorcontrib><creatorcontrib>Chen, Xiaofeng</creatorcontrib><creatorcontrib>Wang, Yingjun</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jiaan</au><au>Xu, Caixia</au><au>Wu, Gang</au><au>Cao, Xiaodong</au><au>Zhang, Liangming</au><au>Zhai, Zhichen</au><au>Zheng, Zhiwen</au><au>Chen, Xiaofeng</au><au>Wang, Yingjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen–hydroxyapatite layered scaffolds</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>7</volume><issue>11</issue><spage>3999</spage><epage>4006</epage><pages>3999-4006</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Integrated, layered osteochondral (OC) composite materials and/or engineered OC grafts are considered as promising strategies for the treatment of OC damage. A novel biomimetic collagen–hydroxyapatite (COL–HA) OC scaffold with different integrated layers has been generated by freeze-drying. The capacity of the upper COL layer and the lower COL/HA layer to promote the growth and differentiation of human mesenchymal stem cells (hMSCs) into chondrocytes and osteoblasts respectively was evaluated. Cell viability and proliferation on COL and COL/HA scaffolds were assessed by the MTT test. The chondrogenic differentiation of hMSCs on both scaffolds was evaluated by glucosaminoglycan (GAG) quantification, alcian blue staining, type II collagen immunocytochemistry assay and real-time polymerase chain reaction in chondrogenic medium for 21 days. Osteogenic differentiation was evaluated by alkaline phosphatase activity assay, type I collagen immunocytochemistry staining, alizarin S staining and mRNA expression of osteogenic gene for 14 days in osteogenic medium. The results indicated that hMSCs on both COL and COL/HA scaffolds were viable and able to proliferate over time. The COL layer was more efficient in inducing hMSC chondrogenic differentiation than the COL/HA layer, while the COL/HA layer possessed the superiority on promoting hMSC osteogenic induction over either COL layer or pure HA. In conclusion, the layered OC composite materials can effectively promote cartilage and bone tissue generation in vitro and are potentially usable for OC tissue engineering.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>21757035</pmid><doi>10.1016/j.actbio.2011.06.040</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2011-11, Vol.7 (11), p.3999-4006
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_918060088
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Adult
alizarin
alkaline phosphatase
Antigens, Differentiation - biosynthesis
Biocompatibility
Biomedical materials
biomimetics
bone formation
Bone Regeneration
cartilage
Cartilage tissue engineering
Cell Differentiation
cell viability
Cells, Cultured
chondrocytes
Chondrocytes - cytology
Chondrocytes - metabolism
Chondrogenesis
Collagen
Collagen - chemistry
composite materials
Differentiation
Durapatite - chemistry
Female
freeze drying
gene expression
genes
Human
Humans
Hydroxyapatite
immunocytochemistry
In vitro testing
Male
Mesenchymal stem cell
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - metabolism
messenger RNA
osteoblasts
Osteoblasts - cytology
Osteoblasts - metabolism
Osteochondral differentiation
Osteogenesis
quantitative polymerase chain reaction
Scaffolds
Staining
stem cells
tissue engineering
Tissue Scaffolds
title In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen–hydroxyapatite layered scaffolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20generation%20of%20osteochondral%20differentiation%20of%20human%20marrow%20mesenchymal%20stem%20cells%20in%20novel%20collagen%E2%80%93hydroxyapatite%20layered%20scaffolds&rft.jtitle=Acta%20biomaterialia&rft.au=Zhou,%20Jiaan&rft.date=2011-11-01&rft.volume=7&rft.issue=11&rft.spage=3999&rft.epage=4006&rft.pages=3999-4006&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2011.06.040&rft_dat=%3Cproquest_cross%3E1671361665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671361665&rft_id=info:pmid/21757035&rft_els_id=S1742706111002868&rfr_iscdi=true