In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen–hydroxyapatite layered scaffolds
Integrated, layered osteochondral (OC) composite materials and/or engineered OC grafts are considered as promising strategies for the treatment of OC damage. A novel biomimetic collagen–hydroxyapatite (COL–HA) OC scaffold with different integrated layers has been generated by freeze-drying. The capa...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2011-11, Vol.7 (11), p.3999-4006 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4006 |
---|---|
container_issue | 11 |
container_start_page | 3999 |
container_title | Acta biomaterialia |
container_volume | 7 |
creator | Zhou, Jiaan Xu, Caixia Wu, Gang Cao, Xiaodong Zhang, Liangming Zhai, Zhichen Zheng, Zhiwen Chen, Xiaofeng Wang, Yingjun |
description | Integrated, layered osteochondral (OC) composite materials and/or engineered OC grafts are considered as promising strategies for the treatment of OC damage. A novel biomimetic collagen–hydroxyapatite (COL–HA) OC scaffold with different integrated layers has been generated by freeze-drying. The capacity of the upper COL layer and the lower COL/HA layer to promote the growth and differentiation of human mesenchymal stem cells (hMSCs) into chondrocytes and osteoblasts respectively was evaluated. Cell viability and proliferation on COL and COL/HA scaffolds were assessed by the MTT test. The chondrogenic differentiation of hMSCs on both scaffolds was evaluated by glucosaminoglycan (GAG) quantification, alcian blue staining, type II collagen immunocytochemistry assay and real-time polymerase chain reaction in chondrogenic medium for 21
days. Osteogenic differentiation was evaluated by alkaline phosphatase activity assay, type I collagen immunocytochemistry staining, alizarin S staining and mRNA expression of osteogenic gene for 14
days in osteogenic medium. The results indicated that hMSCs on both COL and COL/HA scaffolds were viable and able to proliferate over time. The COL layer was more efficient in inducing hMSC chondrogenic differentiation than the COL/HA layer, while the COL/HA layer possessed the superiority on promoting hMSC osteogenic induction over either COL layer or pure HA. In conclusion, the layered OC composite materials can effectively promote cartilage and bone tissue generation in vitro and are potentially usable for OC tissue engineering. |
doi_str_mv | 10.1016/j.actbio.2011.06.040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918060088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706111002868</els_id><sourcerecordid>1671361665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-e811bfce530f84096d2177b5dcf8dc19fa4c05c9f1f233708d6ed58a9b9b3b0a3</originalsourceid><addsrcrecordid>eNqFkctu1DAUhiMEoqXwBgi8g82Ec3KxnQ0SqgpUqsQCurYc-7jjURIPdmYguz4CEm_Ik-DRlC7Lyl585z-XryheIpQIyN9tSm3m3oeyAsQSeAkNPCpOUQq5Ei2Xj_NfNNVKAMeT4llKG4BaYiWfFicVilZA3Z4Wvy4ntvdzDOyGJop69mFiwbGQZgpmHSYb9cCsd44iTbO_B9a7UU9s1DGGH2ykRJNZL2Nmc-HIDA1DYn5iU9jTwEwYBp0b_Ln9vV5sDD8Xvc1JM7FBLznYsmS0c2Gw6XnxxOkh0Yu796y4_njx7fzz6urLp8vzD1cr0yKfVyQRe2eorcHJBjpu806ib61x0hrsnG4MtKZz6Kq6FiAtJ9tK3fVdX_eg67PizTF3G8P3HaVZjT4dxtYThV1SHUrgAFL-l5QdrxoQVZvJtw-SyAXWHDk_oM0RNTGkFMmpbfT5motCUAe_aqOOftXBrwKust9c9uquw64fyd4X_ROagddHwOmg9E30SV1_zQktAIJEUWfi_ZGgfN29p6iS8dkeWR_JzMoG__AMfwFFG8ZK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671361665</pqid></control><display><type>article</type><title>In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen–hydroxyapatite layered scaffolds</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Zhou, Jiaan ; Xu, Caixia ; Wu, Gang ; Cao, Xiaodong ; Zhang, Liangming ; Zhai, Zhichen ; Zheng, Zhiwen ; Chen, Xiaofeng ; Wang, Yingjun</creator><creatorcontrib>Zhou, Jiaan ; Xu, Caixia ; Wu, Gang ; Cao, Xiaodong ; Zhang, Liangming ; Zhai, Zhichen ; Zheng, Zhiwen ; Chen, Xiaofeng ; Wang, Yingjun</creatorcontrib><description>Integrated, layered osteochondral (OC) composite materials and/or engineered OC grafts are considered as promising strategies for the treatment of OC damage. A novel biomimetic collagen–hydroxyapatite (COL–HA) OC scaffold with different integrated layers has been generated by freeze-drying. The capacity of the upper COL layer and the lower COL/HA layer to promote the growth and differentiation of human mesenchymal stem cells (hMSCs) into chondrocytes and osteoblasts respectively was evaluated. Cell viability and proliferation on COL and COL/HA scaffolds were assessed by the MTT test. The chondrogenic differentiation of hMSCs on both scaffolds was evaluated by glucosaminoglycan (GAG) quantification, alcian blue staining, type II collagen immunocytochemistry assay and real-time polymerase chain reaction in chondrogenic medium for 21
days. Osteogenic differentiation was evaluated by alkaline phosphatase activity assay, type I collagen immunocytochemistry staining, alizarin S staining and mRNA expression of osteogenic gene for 14
days in osteogenic medium. The results indicated that hMSCs on both COL and COL/HA scaffolds were viable and able to proliferate over time. The COL layer was more efficient in inducing hMSC chondrogenic differentiation than the COL/HA layer, while the COL/HA layer possessed the superiority on promoting hMSC osteogenic induction over either COL layer or pure HA. In conclusion, the layered OC composite materials can effectively promote cartilage and bone tissue generation in vitro and are potentially usable for OC tissue engineering.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2011.06.040</identifier><identifier>PMID: 21757035</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adult ; alizarin ; alkaline phosphatase ; Antigens, Differentiation - biosynthesis ; Biocompatibility ; Biomedical materials ; biomimetics ; bone formation ; Bone Regeneration ; cartilage ; Cartilage tissue engineering ; Cell Differentiation ; cell viability ; Cells, Cultured ; chondrocytes ; Chondrocytes - cytology ; Chondrocytes - metabolism ; Chondrogenesis ; Collagen ; Collagen - chemistry ; composite materials ; Differentiation ; Durapatite - chemistry ; Female ; freeze drying ; gene expression ; genes ; Human ; Humans ; Hydroxyapatite ; immunocytochemistry ; In vitro testing ; Male ; Mesenchymal stem cell ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - metabolism ; messenger RNA ; osteoblasts ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Osteochondral differentiation ; Osteogenesis ; quantitative polymerase chain reaction ; Scaffolds ; Staining ; stem cells ; tissue engineering ; Tissue Scaffolds</subject><ispartof>Acta biomaterialia, 2011-11, Vol.7 (11), p.3999-4006</ispartof><rights>2011 Acta Materialia Inc.</rights><rights>Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-e811bfce530f84096d2177b5dcf8dc19fa4c05c9f1f233708d6ed58a9b9b3b0a3</citedby><cites>FETCH-LOGICAL-c516t-e811bfce530f84096d2177b5dcf8dc19fa4c05c9f1f233708d6ed58a9b9b3b0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2011.06.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21757035$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Jiaan</creatorcontrib><creatorcontrib>Xu, Caixia</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Cao, Xiaodong</creatorcontrib><creatorcontrib>Zhang, Liangming</creatorcontrib><creatorcontrib>Zhai, Zhichen</creatorcontrib><creatorcontrib>Zheng, Zhiwen</creatorcontrib><creatorcontrib>Chen, Xiaofeng</creatorcontrib><creatorcontrib>Wang, Yingjun</creatorcontrib><title>In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen–hydroxyapatite layered scaffolds</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Integrated, layered osteochondral (OC) composite materials and/or engineered OC grafts are considered as promising strategies for the treatment of OC damage. A novel biomimetic collagen–hydroxyapatite (COL–HA) OC scaffold with different integrated layers has been generated by freeze-drying. The capacity of the upper COL layer and the lower COL/HA layer to promote the growth and differentiation of human mesenchymal stem cells (hMSCs) into chondrocytes and osteoblasts respectively was evaluated. Cell viability and proliferation on COL and COL/HA scaffolds were assessed by the MTT test. The chondrogenic differentiation of hMSCs on both scaffolds was evaluated by glucosaminoglycan (GAG) quantification, alcian blue staining, type II collagen immunocytochemistry assay and real-time polymerase chain reaction in chondrogenic medium for 21
days. Osteogenic differentiation was evaluated by alkaline phosphatase activity assay, type I collagen immunocytochemistry staining, alizarin S staining and mRNA expression of osteogenic gene for 14
days in osteogenic medium. The results indicated that hMSCs on both COL and COL/HA scaffolds were viable and able to proliferate over time. The COL layer was more efficient in inducing hMSC chondrogenic differentiation than the COL/HA layer, while the COL/HA layer possessed the superiority on promoting hMSC osteogenic induction over either COL layer or pure HA. In conclusion, the layered OC composite materials can effectively promote cartilage and bone tissue generation in vitro and are potentially usable for OC tissue engineering.</description><subject>Adult</subject><subject>alizarin</subject><subject>alkaline phosphatase</subject><subject>Antigens, Differentiation - biosynthesis</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>biomimetics</subject><subject>bone formation</subject><subject>Bone Regeneration</subject><subject>cartilage</subject><subject>Cartilage tissue engineering</subject><subject>Cell Differentiation</subject><subject>cell viability</subject><subject>Cells, Cultured</subject><subject>chondrocytes</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - metabolism</subject><subject>Chondrogenesis</subject><subject>Collagen</subject><subject>Collagen - chemistry</subject><subject>composite materials</subject><subject>Differentiation</subject><subject>Durapatite - chemistry</subject><subject>Female</subject><subject>freeze drying</subject><subject>gene expression</subject><subject>genes</subject><subject>Human</subject><subject>Humans</subject><subject>Hydroxyapatite</subject><subject>immunocytochemistry</subject><subject>In vitro testing</subject><subject>Male</subject><subject>Mesenchymal stem cell</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>messenger RNA</subject><subject>osteoblasts</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Osteochondral differentiation</subject><subject>Osteogenesis</subject><subject>quantitative polymerase chain reaction</subject><subject>Scaffolds</subject><subject>Staining</subject><subject>stem cells</subject><subject>tissue engineering</subject><subject>Tissue Scaffolds</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhiMEoqXwBgi8g82Ec3KxnQ0SqgpUqsQCurYc-7jjURIPdmYguz4CEm_Ik-DRlC7Lyl585z-XryheIpQIyN9tSm3m3oeyAsQSeAkNPCpOUQq5Ei2Xj_NfNNVKAMeT4llKG4BaYiWfFicVilZA3Z4Wvy4ntvdzDOyGJop69mFiwbGQZgpmHSYb9cCsd44iTbO_B9a7UU9s1DGGH2ykRJNZL2Nmc-HIDA1DYn5iU9jTwEwYBp0b_Ln9vV5sDD8Xvc1JM7FBLznYsmS0c2Gw6XnxxOkh0Yu796y4_njx7fzz6urLp8vzD1cr0yKfVyQRe2eorcHJBjpu806ib61x0hrsnG4MtKZz6Kq6FiAtJ9tK3fVdX_eg67PizTF3G8P3HaVZjT4dxtYThV1SHUrgAFL-l5QdrxoQVZvJtw-SyAXWHDk_oM0RNTGkFMmpbfT5motCUAe_aqOOftXBrwKust9c9uquw64fyd4X_ROagddHwOmg9E30SV1_zQktAIJEUWfi_ZGgfN29p6iS8dkeWR_JzMoG__AMfwFFG8ZK</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Zhou, Jiaan</creator><creator>Xu, Caixia</creator><creator>Wu, Gang</creator><creator>Cao, Xiaodong</creator><creator>Zhang, Liangming</creator><creator>Zhai, Zhichen</creator><creator>Zheng, Zhiwen</creator><creator>Chen, Xiaofeng</creator><creator>Wang, Yingjun</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20111101</creationdate><title>In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen–hydroxyapatite layered scaffolds</title><author>Zhou, Jiaan ; Xu, Caixia ; Wu, Gang ; Cao, Xiaodong ; Zhang, Liangming ; Zhai, Zhichen ; Zheng, Zhiwen ; Chen, Xiaofeng ; Wang, Yingjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-e811bfce530f84096d2177b5dcf8dc19fa4c05c9f1f233708d6ed58a9b9b3b0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adult</topic><topic>alizarin</topic><topic>alkaline phosphatase</topic><topic>Antigens, Differentiation - biosynthesis</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>biomimetics</topic><topic>bone formation</topic><topic>Bone Regeneration</topic><topic>cartilage</topic><topic>Cartilage tissue engineering</topic><topic>Cell Differentiation</topic><topic>cell viability</topic><topic>Cells, Cultured</topic><topic>chondrocytes</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - metabolism</topic><topic>Chondrogenesis</topic><topic>Collagen</topic><topic>Collagen - chemistry</topic><topic>composite materials</topic><topic>Differentiation</topic><topic>Durapatite - chemistry</topic><topic>Female</topic><topic>freeze drying</topic><topic>gene expression</topic><topic>genes</topic><topic>Human</topic><topic>Humans</topic><topic>Hydroxyapatite</topic><topic>immunocytochemistry</topic><topic>In vitro testing</topic><topic>Male</topic><topic>Mesenchymal stem cell</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>messenger RNA</topic><topic>osteoblasts</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Osteochondral differentiation</topic><topic>Osteogenesis</topic><topic>quantitative polymerase chain reaction</topic><topic>Scaffolds</topic><topic>Staining</topic><topic>stem cells</topic><topic>tissue engineering</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jiaan</creatorcontrib><creatorcontrib>Xu, Caixia</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Cao, Xiaodong</creatorcontrib><creatorcontrib>Zhang, Liangming</creatorcontrib><creatorcontrib>Zhai, Zhichen</creatorcontrib><creatorcontrib>Zheng, Zhiwen</creatorcontrib><creatorcontrib>Chen, Xiaofeng</creatorcontrib><creatorcontrib>Wang, Yingjun</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jiaan</au><au>Xu, Caixia</au><au>Wu, Gang</au><au>Cao, Xiaodong</au><au>Zhang, Liangming</au><au>Zhai, Zhichen</au><au>Zheng, Zhiwen</au><au>Chen, Xiaofeng</au><au>Wang, Yingjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen–hydroxyapatite layered scaffolds</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>7</volume><issue>11</issue><spage>3999</spage><epage>4006</epage><pages>3999-4006</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Integrated, layered osteochondral (OC) composite materials and/or engineered OC grafts are considered as promising strategies for the treatment of OC damage. A novel biomimetic collagen–hydroxyapatite (COL–HA) OC scaffold with different integrated layers has been generated by freeze-drying. The capacity of the upper COL layer and the lower COL/HA layer to promote the growth and differentiation of human mesenchymal stem cells (hMSCs) into chondrocytes and osteoblasts respectively was evaluated. Cell viability and proliferation on COL and COL/HA scaffolds were assessed by the MTT test. The chondrogenic differentiation of hMSCs on both scaffolds was evaluated by glucosaminoglycan (GAG) quantification, alcian blue staining, type II collagen immunocytochemistry assay and real-time polymerase chain reaction in chondrogenic medium for 21
days. Osteogenic differentiation was evaluated by alkaline phosphatase activity assay, type I collagen immunocytochemistry staining, alizarin S staining and mRNA expression of osteogenic gene for 14
days in osteogenic medium. The results indicated that hMSCs on both COL and COL/HA scaffolds were viable and able to proliferate over time. The COL layer was more efficient in inducing hMSC chondrogenic differentiation than the COL/HA layer, while the COL/HA layer possessed the superiority on promoting hMSC osteogenic induction over either COL layer or pure HA. In conclusion, the layered OC composite materials can effectively promote cartilage and bone tissue generation in vitro and are potentially usable for OC tissue engineering.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>21757035</pmid><doi>10.1016/j.actbio.2011.06.040</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2011-11, Vol.7 (11), p.3999-4006 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_918060088 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Adult alizarin alkaline phosphatase Antigens, Differentiation - biosynthesis Biocompatibility Biomedical materials biomimetics bone formation Bone Regeneration cartilage Cartilage tissue engineering Cell Differentiation cell viability Cells, Cultured chondrocytes Chondrocytes - cytology Chondrocytes - metabolism Chondrogenesis Collagen Collagen - chemistry composite materials Differentiation Durapatite - chemistry Female freeze drying gene expression genes Human Humans Hydroxyapatite immunocytochemistry In vitro testing Male Mesenchymal stem cell Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - metabolism messenger RNA osteoblasts Osteoblasts - cytology Osteoblasts - metabolism Osteochondral differentiation Osteogenesis quantitative polymerase chain reaction Scaffolds Staining stem cells tissue engineering Tissue Scaffolds |
title | In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen–hydroxyapatite layered scaffolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20generation%20of%20osteochondral%20differentiation%20of%20human%20marrow%20mesenchymal%20stem%20cells%20in%20novel%20collagen%E2%80%93hydroxyapatite%20layered%20scaffolds&rft.jtitle=Acta%20biomaterialia&rft.au=Zhou,%20Jiaan&rft.date=2011-11-01&rft.volume=7&rft.issue=11&rft.spage=3999&rft.epage=4006&rft.pages=3999-4006&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2011.06.040&rft_dat=%3Cproquest_cross%3E1671361665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671361665&rft_id=info:pmid/21757035&rft_els_id=S1742706111002868&rfr_iscdi=true |