Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester

Porous scaffolds of a random co-polymer of ω-pentadecalactone (PDL) and ε-caprolactone (CL) (poly(PDL–CL)), synthesized by biocatalysis, were fabricated by supercritical carbon dioxide (scCO2) foaming. The co-polymer, containing 31mol.% CL units, is highly crystalline (Tm=82°C, ΔHm=105Jg−1) thanks t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2010-01, Vol.6 (1), p.130-136
Hauptverfasser: Gualandi, Chiara, White, Lisa J., Chen, Liu, Gross, Richard A., Shakesheff, Kevin M., Howdle, Steven M., Scandola, Mariastella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue 1
container_start_page 130
container_title Acta biomaterialia
container_volume 6
creator Gualandi, Chiara
White, Lisa J.
Chen, Liu
Gross, Richard A.
Shakesheff, Kevin M.
Howdle, Steven M.
Scandola, Mariastella
description Porous scaffolds of a random co-polymer of ω-pentadecalactone (PDL) and ε-caprolactone (CL) (poly(PDL–CL)), synthesized by biocatalysis, were fabricated by supercritical carbon dioxide (scCO2) foaming. The co-polymer, containing 31mol.% CL units, is highly crystalline (Tm=82°C, ΔHm=105Jg−1) thanks to the ability of the two monomer units to co-crystallize. The co-polymer can be successfully foamed upon homogeneous absorption of scCO2 at T>Tm. The effect of soaking time, depressurization rate and cooling rate on scaffold porosity, pore size distribution and pore interconnectivity was investigated by micro X-ray computed tomography. Scaffolds with a porosity in the range 42–76% and an average pore size of 100–375μm were successfully obtained by adjusting the main foaming parameters. Process conditions in the range investigated did not affect the degree of crystallinity of poly(PDL–CL) scaffolds. A preliminary study of the mechanical properties of the scaffolds revealed that poly(PDL–CL) foams may find application in the regeneration of cartilage tissue.
doi_str_mv 10.1016/j.actbio.2009.07.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918059724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706109003055</els_id><sourcerecordid>918059724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-426c6fc66e2597a17b1e5aecf51680a1af0932eba524b6a6d179c8045e5ae0db3</originalsourceid><addsrcrecordid>eNqFkUFvFCEYhidGY2v1HxjDTS8zBZYB5mJiGrUmTXqwPRNgPnbZMMMKTOOc_eOy2U281YQAh-d73uR7m-Y9wR3BhF_vO22L8bGjGA8dFh2m-EVzSaSQrei5fFn_gtFWYE4umjc57zHeSELl6-aCDLweIS-bPz-tdi6GEbmYUPE5L4Bg3voZIPl5i5w2yVtdYERmRXOcW59j2UGadEB5OUCyyZdKBGR1MnFGo4-__QhVqKejITqk0c5vd2FFNq256BCqHh1iWCEXSG-bV06HDO_O71Xz-O3rw81te3f__cfNl7vWMspLWy_LneUcaD8ITYQh0GuwridcYk20w8OGgtE9ZYZrPhIxWIlZf6TwaDZXzceT95Dir6VGq8lnCyHoGeKS1UAkrmbK_kuKDSO9EGyo5KdnScIFYXXZTFaUnVCbYs4JnDokP-m0KoLVsVK1V6dK1bFShYWqldaxD-eExUww_hs6d1iBzycA6u6ePCSVrYfZwugT2KLG6J9P-Aurerbq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671461948</pqid></control><display><type>article</type><title>Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Gualandi, Chiara ; White, Lisa J. ; Chen, Liu ; Gross, Richard A. ; Shakesheff, Kevin M. ; Howdle, Steven M. ; Scandola, Mariastella</creator><creatorcontrib>Gualandi, Chiara ; White, Lisa J. ; Chen, Liu ; Gross, Richard A. ; Shakesheff, Kevin M. ; Howdle, Steven M. ; Scandola, Mariastella</creatorcontrib><description>Porous scaffolds of a random co-polymer of ω-pentadecalactone (PDL) and ε-caprolactone (CL) (poly(PDL–CL)), synthesized by biocatalysis, were fabricated by supercritical carbon dioxide (scCO2) foaming. The co-polymer, containing 31mol.% CL units, is highly crystalline (Tm=82°C, ΔHm=105Jg−1) thanks to the ability of the two monomer units to co-crystallize. The co-polymer can be successfully foamed upon homogeneous absorption of scCO2 at T&gt;Tm. The effect of soaking time, depressurization rate and cooling rate on scaffold porosity, pore size distribution and pore interconnectivity was investigated by micro X-ray computed tomography. Scaffolds with a porosity in the range 42–76% and an average pore size of 100–375μm were successfully obtained by adjusting the main foaming parameters. Process conditions in the range investigated did not affect the degree of crystallinity of poly(PDL–CL) scaffolds. A preliminary study of the mechanical properties of the scaffolds revealed that poly(PDL–CL) foams may find application in the regeneration of cartilage tissue.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2009.07.020</identifier><identifier>PMID: 19619678</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Biocompatible Materials - chemistry ; Biomaterial ; Carbon dioxide ; Carbon Dioxide - chemistry ; Crystal structure ; Crystallization ; Crystallography, X-Ray - methods ; Foaming ; Foams ; Kinetics ; Monomers ; Polyesters - chemistry ; Polymers - chemistry ; Pore size ; Porosity ; Scaffold ; Scaffolds ; Stress, Mechanical ; Supercritical CO2 ; Temperature ; Tissue engineering ; Tissue Engineering - methods ; X-Ray Microtomography - methods</subject><ispartof>Acta biomaterialia, 2010-01, Vol.6 (1), p.130-136</ispartof><rights>2009 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-426c6fc66e2597a17b1e5aecf51680a1af0932eba524b6a6d179c8045e5ae0db3</citedby><cites>FETCH-LOGICAL-c426t-426c6fc66e2597a17b1e5aecf51680a1af0932eba524b6a6d179c8045e5ae0db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2009.07.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19619678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gualandi, Chiara</creatorcontrib><creatorcontrib>White, Lisa J.</creatorcontrib><creatorcontrib>Chen, Liu</creatorcontrib><creatorcontrib>Gross, Richard A.</creatorcontrib><creatorcontrib>Shakesheff, Kevin M.</creatorcontrib><creatorcontrib>Howdle, Steven M.</creatorcontrib><creatorcontrib>Scandola, Mariastella</creatorcontrib><title>Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Porous scaffolds of a random co-polymer of ω-pentadecalactone (PDL) and ε-caprolactone (CL) (poly(PDL–CL)), synthesized by biocatalysis, were fabricated by supercritical carbon dioxide (scCO2) foaming. The co-polymer, containing 31mol.% CL units, is highly crystalline (Tm=82°C, ΔHm=105Jg−1) thanks to the ability of the two monomer units to co-crystallize. The co-polymer can be successfully foamed upon homogeneous absorption of scCO2 at T&gt;Tm. The effect of soaking time, depressurization rate and cooling rate on scaffold porosity, pore size distribution and pore interconnectivity was investigated by micro X-ray computed tomography. Scaffolds with a porosity in the range 42–76% and an average pore size of 100–375μm were successfully obtained by adjusting the main foaming parameters. Process conditions in the range investigated did not affect the degree of crystallinity of poly(PDL–CL) scaffolds. A preliminary study of the mechanical properties of the scaffolds revealed that poly(PDL–CL) foams may find application in the regeneration of cartilage tissue.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomaterial</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - chemistry</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Crystallography, X-Ray - methods</subject><subject>Foaming</subject><subject>Foams</subject><subject>Kinetics</subject><subject>Monomers</subject><subject>Polyesters - chemistry</subject><subject>Polymers - chemistry</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Scaffold</subject><subject>Scaffolds</subject><subject>Stress, Mechanical</subject><subject>Supercritical CO2</subject><subject>Temperature</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>X-Ray Microtomography - methods</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFvFCEYhidGY2v1HxjDTS8zBZYB5mJiGrUmTXqwPRNgPnbZMMMKTOOc_eOy2U281YQAh-d73uR7m-Y9wR3BhF_vO22L8bGjGA8dFh2m-EVzSaSQrei5fFn_gtFWYE4umjc57zHeSELl6-aCDLweIS-bPz-tdi6GEbmYUPE5L4Bg3voZIPl5i5w2yVtdYERmRXOcW59j2UGadEB5OUCyyZdKBGR1MnFGo4-__QhVqKejITqk0c5vd2FFNq256BCqHh1iWCEXSG-bV06HDO_O71Xz-O3rw81te3f__cfNl7vWMspLWy_LneUcaD8ITYQh0GuwridcYk20w8OGgtE9ZYZrPhIxWIlZf6TwaDZXzceT95Dir6VGq8lnCyHoGeKS1UAkrmbK_kuKDSO9EGyo5KdnScIFYXXZTFaUnVCbYs4JnDokP-m0KoLVsVK1V6dK1bFShYWqldaxD-eExUww_hs6d1iBzycA6u6ePCSVrYfZwugT2KLG6J9P-Aurerbq</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Gualandi, Chiara</creator><creator>White, Lisa J.</creator><creator>Chen, Liu</creator><creator>Gross, Richard A.</creator><creator>Shakesheff, Kevin M.</creator><creator>Howdle, Steven M.</creator><creator>Scandola, Mariastella</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>201001</creationdate><title>Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester</title><author>Gualandi, Chiara ; White, Lisa J. ; Chen, Liu ; Gross, Richard A. ; Shakesheff, Kevin M. ; Howdle, Steven M. ; Scandola, Mariastella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-426c6fc66e2597a17b1e5aecf51680a1af0932eba524b6a6d179c8045e5ae0db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomaterial</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - chemistry</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Crystallography, X-Ray - methods</topic><topic>Foaming</topic><topic>Foams</topic><topic>Kinetics</topic><topic>Monomers</topic><topic>Polyesters - chemistry</topic><topic>Polymers - chemistry</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Scaffold</topic><topic>Scaffolds</topic><topic>Stress, Mechanical</topic><topic>Supercritical CO2</topic><topic>Temperature</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>X-Ray Microtomography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gualandi, Chiara</creatorcontrib><creatorcontrib>White, Lisa J.</creatorcontrib><creatorcontrib>Chen, Liu</creatorcontrib><creatorcontrib>Gross, Richard A.</creatorcontrib><creatorcontrib>Shakesheff, Kevin M.</creatorcontrib><creatorcontrib>Howdle, Steven M.</creatorcontrib><creatorcontrib>Scandola, Mariastella</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gualandi, Chiara</au><au>White, Lisa J.</au><au>Chen, Liu</au><au>Gross, Richard A.</au><au>Shakesheff, Kevin M.</au><au>Howdle, Steven M.</au><au>Scandola, Mariastella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2010-01</date><risdate>2010</risdate><volume>6</volume><issue>1</issue><spage>130</spage><epage>136</epage><pages>130-136</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Porous scaffolds of a random co-polymer of ω-pentadecalactone (PDL) and ε-caprolactone (CL) (poly(PDL–CL)), synthesized by biocatalysis, were fabricated by supercritical carbon dioxide (scCO2) foaming. The co-polymer, containing 31mol.% CL units, is highly crystalline (Tm=82°C, ΔHm=105Jg−1) thanks to the ability of the two monomer units to co-crystallize. The co-polymer can be successfully foamed upon homogeneous absorption of scCO2 at T&gt;Tm. The effect of soaking time, depressurization rate and cooling rate on scaffold porosity, pore size distribution and pore interconnectivity was investigated by micro X-ray computed tomography. Scaffolds with a porosity in the range 42–76% and an average pore size of 100–375μm were successfully obtained by adjusting the main foaming parameters. Process conditions in the range investigated did not affect the degree of crystallinity of poly(PDL–CL) scaffolds. A preliminary study of the mechanical properties of the scaffolds revealed that poly(PDL–CL) foams may find application in the regeneration of cartilage tissue.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19619678</pmid><doi>10.1016/j.actbio.2009.07.020</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2010-01, Vol.6 (1), p.130-136
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_918059724
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Biocompatible Materials - chemistry
Biomaterial
Carbon dioxide
Carbon Dioxide - chemistry
Crystal structure
Crystallization
Crystallography, X-Ray - methods
Foaming
Foams
Kinetics
Monomers
Polyesters - chemistry
Polymers - chemistry
Pore size
Porosity
Scaffold
Scaffolds
Stress, Mechanical
Supercritical CO2
Temperature
Tissue engineering
Tissue Engineering - methods
X-Ray Microtomography - methods
title Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaffold%20for%20tissue%20engineering%20fabricated%20by%20non-isothermal%20supercritical%20carbon%20dioxide%20foaming%20of%20a%20highly%20crystalline%20polyester&rft.jtitle=Acta%20biomaterialia&rft.au=Gualandi,%20Chiara&rft.date=2010-01&rft.volume=6&rft.issue=1&rft.spage=130&rft.epage=136&rft.pages=130-136&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2009.07.020&rft_dat=%3Cproquest_cross%3E918059724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671461948&rft_id=info:pmid/19619678&rft_els_id=S1742706109003055&rfr_iscdi=true