Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester
Porous scaffolds of a random co-polymer of ω-pentadecalactone (PDL) and ε-caprolactone (CL) (poly(PDL–CL)), synthesized by biocatalysis, were fabricated by supercritical carbon dioxide (scCO2) foaming. The co-polymer, containing 31mol.% CL units, is highly crystalline (Tm=82°C, ΔHm=105Jg−1) thanks t...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2010-01, Vol.6 (1), p.130-136 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136 |
---|---|
container_issue | 1 |
container_start_page | 130 |
container_title | Acta biomaterialia |
container_volume | 6 |
creator | Gualandi, Chiara White, Lisa J. Chen, Liu Gross, Richard A. Shakesheff, Kevin M. Howdle, Steven M. Scandola, Mariastella |
description | Porous scaffolds of a random co-polymer of ω-pentadecalactone (PDL) and ε-caprolactone (CL) (poly(PDL–CL)), synthesized by biocatalysis, were fabricated by supercritical carbon dioxide (scCO2) foaming. The co-polymer, containing 31mol.% CL units, is highly crystalline (Tm=82°C, ΔHm=105Jg−1) thanks to the ability of the two monomer units to co-crystallize. The co-polymer can be successfully foamed upon homogeneous absorption of scCO2 at T>Tm. The effect of soaking time, depressurization rate and cooling rate on scaffold porosity, pore size distribution and pore interconnectivity was investigated by micro X-ray computed tomography. Scaffolds with a porosity in the range 42–76% and an average pore size of 100–375μm were successfully obtained by adjusting the main foaming parameters. Process conditions in the range investigated did not affect the degree of crystallinity of poly(PDL–CL) scaffolds. A preliminary study of the mechanical properties of the scaffolds revealed that poly(PDL–CL) foams may find application in the regeneration of cartilage tissue. |
doi_str_mv | 10.1016/j.actbio.2009.07.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918059724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706109003055</els_id><sourcerecordid>918059724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-426c6fc66e2597a17b1e5aecf51680a1af0932eba524b6a6d179c8045e5ae0db3</originalsourceid><addsrcrecordid>eNqFkUFvFCEYhidGY2v1HxjDTS8zBZYB5mJiGrUmTXqwPRNgPnbZMMMKTOOc_eOy2U281YQAh-d73uR7m-Y9wR3BhF_vO22L8bGjGA8dFh2m-EVzSaSQrei5fFn_gtFWYE4umjc57zHeSELl6-aCDLweIS-bPz-tdi6GEbmYUPE5L4Bg3voZIPl5i5w2yVtdYERmRXOcW59j2UGadEB5OUCyyZdKBGR1MnFGo4-__QhVqKejITqk0c5vd2FFNq256BCqHh1iWCEXSG-bV06HDO_O71Xz-O3rw81te3f__cfNl7vWMspLWy_LneUcaD8ITYQh0GuwridcYk20w8OGgtE9ZYZrPhIxWIlZf6TwaDZXzceT95Dir6VGq8lnCyHoGeKS1UAkrmbK_kuKDSO9EGyo5KdnScIFYXXZTFaUnVCbYs4JnDokP-m0KoLVsVK1V6dK1bFShYWqldaxD-eExUww_hs6d1iBzycA6u6ePCSVrYfZwugT2KLG6J9P-Aurerbq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671461948</pqid></control><display><type>article</type><title>Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Gualandi, Chiara ; White, Lisa J. ; Chen, Liu ; Gross, Richard A. ; Shakesheff, Kevin M. ; Howdle, Steven M. ; Scandola, Mariastella</creator><creatorcontrib>Gualandi, Chiara ; White, Lisa J. ; Chen, Liu ; Gross, Richard A. ; Shakesheff, Kevin M. ; Howdle, Steven M. ; Scandola, Mariastella</creatorcontrib><description>Porous scaffolds of a random co-polymer of ω-pentadecalactone (PDL) and ε-caprolactone (CL) (poly(PDL–CL)), synthesized by biocatalysis, were fabricated by supercritical carbon dioxide (scCO2) foaming. The co-polymer, containing 31mol.% CL units, is highly crystalline (Tm=82°C, ΔHm=105Jg−1) thanks to the ability of the two monomer units to co-crystallize. The co-polymer can be successfully foamed upon homogeneous absorption of scCO2 at T>Tm. The effect of soaking time, depressurization rate and cooling rate on scaffold porosity, pore size distribution and pore interconnectivity was investigated by micro X-ray computed tomography. Scaffolds with a porosity in the range 42–76% and an average pore size of 100–375μm were successfully obtained by adjusting the main foaming parameters. Process conditions in the range investigated did not affect the degree of crystallinity of poly(PDL–CL) scaffolds. A preliminary study of the mechanical properties of the scaffolds revealed that poly(PDL–CL) foams may find application in the regeneration of cartilage tissue.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2009.07.020</identifier><identifier>PMID: 19619678</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Biocompatible Materials - chemistry ; Biomaterial ; Carbon dioxide ; Carbon Dioxide - chemistry ; Crystal structure ; Crystallization ; Crystallography, X-Ray - methods ; Foaming ; Foams ; Kinetics ; Monomers ; Polyesters - chemistry ; Polymers - chemistry ; Pore size ; Porosity ; Scaffold ; Scaffolds ; Stress, Mechanical ; Supercritical CO2 ; Temperature ; Tissue engineering ; Tissue Engineering - methods ; X-Ray Microtomography - methods</subject><ispartof>Acta biomaterialia, 2010-01, Vol.6 (1), p.130-136</ispartof><rights>2009 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-426c6fc66e2597a17b1e5aecf51680a1af0932eba524b6a6d179c8045e5ae0db3</citedby><cites>FETCH-LOGICAL-c426t-426c6fc66e2597a17b1e5aecf51680a1af0932eba524b6a6d179c8045e5ae0db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2009.07.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19619678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gualandi, Chiara</creatorcontrib><creatorcontrib>White, Lisa J.</creatorcontrib><creatorcontrib>Chen, Liu</creatorcontrib><creatorcontrib>Gross, Richard A.</creatorcontrib><creatorcontrib>Shakesheff, Kevin M.</creatorcontrib><creatorcontrib>Howdle, Steven M.</creatorcontrib><creatorcontrib>Scandola, Mariastella</creatorcontrib><title>Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Porous scaffolds of a random co-polymer of ω-pentadecalactone (PDL) and ε-caprolactone (CL) (poly(PDL–CL)), synthesized by biocatalysis, were fabricated by supercritical carbon dioxide (scCO2) foaming. The co-polymer, containing 31mol.% CL units, is highly crystalline (Tm=82°C, ΔHm=105Jg−1) thanks to the ability of the two monomer units to co-crystallize. The co-polymer can be successfully foamed upon homogeneous absorption of scCO2 at T>Tm. The effect of soaking time, depressurization rate and cooling rate on scaffold porosity, pore size distribution and pore interconnectivity was investigated by micro X-ray computed tomography. Scaffolds with a porosity in the range 42–76% and an average pore size of 100–375μm were successfully obtained by adjusting the main foaming parameters. Process conditions in the range investigated did not affect the degree of crystallinity of poly(PDL–CL) scaffolds. A preliminary study of the mechanical properties of the scaffolds revealed that poly(PDL–CL) foams may find application in the regeneration of cartilage tissue.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomaterial</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - chemistry</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Crystallography, X-Ray - methods</subject><subject>Foaming</subject><subject>Foams</subject><subject>Kinetics</subject><subject>Monomers</subject><subject>Polyesters - chemistry</subject><subject>Polymers - chemistry</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Scaffold</subject><subject>Scaffolds</subject><subject>Stress, Mechanical</subject><subject>Supercritical CO2</subject><subject>Temperature</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>X-Ray Microtomography - methods</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFvFCEYhidGY2v1HxjDTS8zBZYB5mJiGrUmTXqwPRNgPnbZMMMKTOOc_eOy2U281YQAh-d73uR7m-Y9wR3BhF_vO22L8bGjGA8dFh2m-EVzSaSQrei5fFn_gtFWYE4umjc57zHeSELl6-aCDLweIS-bPz-tdi6GEbmYUPE5L4Bg3voZIPl5i5w2yVtdYERmRXOcW59j2UGadEB5OUCyyZdKBGR1MnFGo4-__QhVqKejITqk0c5vd2FFNq256BCqHh1iWCEXSG-bV06HDO_O71Xz-O3rw81te3f__cfNl7vWMspLWy_LneUcaD8ITYQh0GuwridcYk20w8OGgtE9ZYZrPhIxWIlZf6TwaDZXzceT95Dir6VGq8lnCyHoGeKS1UAkrmbK_kuKDSO9EGyo5KdnScIFYXXZTFaUnVCbYs4JnDokP-m0KoLVsVK1V6dK1bFShYWqldaxD-eExUww_hs6d1iBzycA6u6ePCSVrYfZwugT2KLG6J9P-Aurerbq</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Gualandi, Chiara</creator><creator>White, Lisa J.</creator><creator>Chen, Liu</creator><creator>Gross, Richard A.</creator><creator>Shakesheff, Kevin M.</creator><creator>Howdle, Steven M.</creator><creator>Scandola, Mariastella</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>201001</creationdate><title>Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester</title><author>Gualandi, Chiara ; White, Lisa J. ; Chen, Liu ; Gross, Richard A. ; Shakesheff, Kevin M. ; Howdle, Steven M. ; Scandola, Mariastella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-426c6fc66e2597a17b1e5aecf51680a1af0932eba524b6a6d179c8045e5ae0db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomaterial</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - chemistry</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Crystallography, X-Ray - methods</topic><topic>Foaming</topic><topic>Foams</topic><topic>Kinetics</topic><topic>Monomers</topic><topic>Polyesters - chemistry</topic><topic>Polymers - chemistry</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Scaffold</topic><topic>Scaffolds</topic><topic>Stress, Mechanical</topic><topic>Supercritical CO2</topic><topic>Temperature</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>X-Ray Microtomography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gualandi, Chiara</creatorcontrib><creatorcontrib>White, Lisa J.</creatorcontrib><creatorcontrib>Chen, Liu</creatorcontrib><creatorcontrib>Gross, Richard A.</creatorcontrib><creatorcontrib>Shakesheff, Kevin M.</creatorcontrib><creatorcontrib>Howdle, Steven M.</creatorcontrib><creatorcontrib>Scandola, Mariastella</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gualandi, Chiara</au><au>White, Lisa J.</au><au>Chen, Liu</au><au>Gross, Richard A.</au><au>Shakesheff, Kevin M.</au><au>Howdle, Steven M.</au><au>Scandola, Mariastella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2010-01</date><risdate>2010</risdate><volume>6</volume><issue>1</issue><spage>130</spage><epage>136</epage><pages>130-136</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Porous scaffolds of a random co-polymer of ω-pentadecalactone (PDL) and ε-caprolactone (CL) (poly(PDL–CL)), synthesized by biocatalysis, were fabricated by supercritical carbon dioxide (scCO2) foaming. The co-polymer, containing 31mol.% CL units, is highly crystalline (Tm=82°C, ΔHm=105Jg−1) thanks to the ability of the two monomer units to co-crystallize. The co-polymer can be successfully foamed upon homogeneous absorption of scCO2 at T>Tm. The effect of soaking time, depressurization rate and cooling rate on scaffold porosity, pore size distribution and pore interconnectivity was investigated by micro X-ray computed tomography. Scaffolds with a porosity in the range 42–76% and an average pore size of 100–375μm were successfully obtained by adjusting the main foaming parameters. Process conditions in the range investigated did not affect the degree of crystallinity of poly(PDL–CL) scaffolds. A preliminary study of the mechanical properties of the scaffolds revealed that poly(PDL–CL) foams may find application in the regeneration of cartilage tissue.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19619678</pmid><doi>10.1016/j.actbio.2009.07.020</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2010-01, Vol.6 (1), p.130-136 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_918059724 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Biocompatible Materials - chemistry Biomaterial Carbon dioxide Carbon Dioxide - chemistry Crystal structure Crystallization Crystallography, X-Ray - methods Foaming Foams Kinetics Monomers Polyesters - chemistry Polymers - chemistry Pore size Porosity Scaffold Scaffolds Stress, Mechanical Supercritical CO2 Temperature Tissue engineering Tissue Engineering - methods X-Ray Microtomography - methods |
title | Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaffold%20for%20tissue%20engineering%20fabricated%20by%20non-isothermal%20supercritical%20carbon%20dioxide%20foaming%20of%20a%20highly%20crystalline%20polyester&rft.jtitle=Acta%20biomaterialia&rft.au=Gualandi,%20Chiara&rft.date=2010-01&rft.volume=6&rft.issue=1&rft.spage=130&rft.epage=136&rft.pages=130-136&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2009.07.020&rft_dat=%3Cproquest_cross%3E918059724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671461948&rft_id=info:pmid/19619678&rft_els_id=S1742706109003055&rfr_iscdi=true |