Analysis of droplet expulsion in stagnant single water-in-oil-in-water double emulsion globules

Double emulsions created by phase inversion can be used for fast liquid–liquid separation; therefore, the coalescence behaviors of these types of multiple emulsions need to be predictable for different physical properties and drop size ratios. The aim of this study is to determine the influence of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2011-10, Vol.66 (20), p.4663-4669
Hauptverfasser: Gaitzsch, F., Gäbler, A., Kraume, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Double emulsions created by phase inversion can be used for fast liquid–liquid separation; therefore, the coalescence behaviors of these types of multiple emulsions need to be predictable for different physical properties and drop size ratios. The aim of this study is to determine the influence of the effective overall drop diameter and the internal droplet size on the coalescence time and the coalescence behavior. Experimental investigations on the physical stability of single stagnant water-in-oil-in-water (W 1/O/W 2) double emulsion globules are performed. For this investigation, a formation device to inject one water droplet into an oil drop inside a water bulk phase is developed. The coalescence process of the sole internal water droplet floating on the O/W 2 interface with the water bulk phase, often termed droplet expulsion or external coalescence, is recorded with a high speed camera. Based on image analysis, the diameters of the effective overall drop D, containing the oil and entrapped water volume, and the internal water droplet d are determined. Additionally, the coalescence time τ, including the time from the first contact of the internal droplet and the drop-bulk interface to the film rupture is measured. A large increase in coalescence time with increasing water droplet diameters is found. For the investigated paraffin oil–water system and initial drop sizes, partial coalescence occurs. In this case, the diameter ratio of daughter-to-mother droplet ψ is determined. ► Automated experimental setup and image analysis for coalescence in W 1/O/W 2 globules. ► Droplet expulsion is an important destabilization process in double emulsions. ► When partial coalescence occurs, about 40% of the original diameter remain. ► Coalescence time increases with increasing internal droplet diameters.
ISSN:0009-2509
1873-4405
DOI:10.1016/j.ces.2011.06.020