The study of electrochemical properties and lithium deposition of graphite at low temperature

► The graphite samples are electrochemically investigated at 25 °C and −5 °C. ► The graphite with high graphitization shows a big reduced capacity by decreasing temperature. ► The graphite with higher rhombohedral phase in graphite can easily form a lithium deposition on the graphite surface. The el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2012-02, Vol.199, p.293-299
Hauptverfasser: Park, Gumjae, Gunawardhana, Nanda, Nakamura, Hiroyoshi, Lee, Yun-Sung, Yoshio, Masaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue
container_start_page 293
container_title Journal of power sources
container_volume 199
creator Park, Gumjae
Gunawardhana, Nanda
Nakamura, Hiroyoshi
Lee, Yun-Sung
Yoshio, Masaki
description ► The graphite samples are electrochemically investigated at 25 °C and −5 °C. ► The graphite with high graphitization shows a big reduced capacity by decreasing temperature. ► The graphite with higher rhombohedral phase in graphite can easily form a lithium deposition on the graphite surface. The electrochemical properties of graphite with various degrees of graphitization, contents of rhombohedral phase, and surface areas were electrochemically investigated at 25 °C and −5 °C. The degree of graphitization and the amount of rhombohedral phase affected the samples’ lithium intercalation/deintercalation and surface deposition. The reductions of electrolyte conductivity and lithium ion diffusion in the graphite interlayer at −5 °C lowered the graphite's capacity. Lithium deposition also occurred on the graphite's surface. Highly graphitized samples were affected greatly by temperature, showing large capacity loss at low temperature. Increased rhombohedral phase facilitated lithium deposition on the graphite's surface as lithium ions did not insert into the graphite interlayers and accumulated at its edged planes. Increasing the pathways for lithium ion intercalation could facilitate lithium intercalation and reduce lithium deposition.
doi_str_mv 10.1016/j.jpowsour.2011.10.058
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918058370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775311020519</els_id><sourcerecordid>918058370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-e233b31cc5e689d3a8b51cf72280e6f784ec3eb81b32c6ebde53bde576069f733</originalsourceid><addsrcrecordid>eNqFkc1KxDAURoMoOI6-gmQjumlNGtNkdor4B4KbcSkhTW-dDG1Tk1SZtzdlRpe6SeByvnyXE4ROKckpoeXlOl8P7iu40ecFoTQNc8LlHppRKVhWCM730YwwITMhODtERyGsCUmkIDP0tlwBDnGsN9g1GFow0Tuzgs4a3eLBuwF8tBCw7mvc2riyY4drGFyw0bp-Cr17PaxsBKwjbt0XjtClkI6jh2N00Og2wMnunqPX-7vl7WP2_PLwdHvznJkrwWIGBWMVo8ZwKOWiZlpWnJpGFIUkUDZCXoFhUElascKUUNXA2XSIkpSLRjA2R-fbd9PCHyOEqDobDLSt7sGNQS2oTEqYIIm8-JOkQghKJZUyoeUWNd6F4KFRg7ed9htFiZrMq7X6Ma8m89N8qpmjs12HDsli43VvbPhNF5zTIi2euOstB0nNpwWvgrHQG6itT_-gamf_q_oG_7SfIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777118188</pqid></control><display><type>article</type><title>The study of electrochemical properties and lithium deposition of graphite at low temperature</title><source>Elsevier ScienceDirect Journals</source><creator>Park, Gumjae ; Gunawardhana, Nanda ; Nakamura, Hiroyoshi ; Lee, Yun-Sung ; Yoshio, Masaki</creator><creatorcontrib>Park, Gumjae ; Gunawardhana, Nanda ; Nakamura, Hiroyoshi ; Lee, Yun-Sung ; Yoshio, Masaki</creatorcontrib><description>► The graphite samples are electrochemically investigated at 25 °C and −5 °C. ► The graphite with high graphitization shows a big reduced capacity by decreasing temperature. ► The graphite with higher rhombohedral phase in graphite can easily form a lithium deposition on the graphite surface. The electrochemical properties of graphite with various degrees of graphitization, contents of rhombohedral phase, and surface areas were electrochemically investigated at 25 °C and −5 °C. The degree of graphitization and the amount of rhombohedral phase affected the samples’ lithium intercalation/deintercalation and surface deposition. The reductions of electrolyte conductivity and lithium ion diffusion in the graphite interlayer at −5 °C lowered the graphite's capacity. Lithium deposition also occurred on the graphite's surface. Highly graphitized samples were affected greatly by temperature, showing large capacity loss at low temperature. Increased rhombohedral phase facilitated lithium deposition on the graphite's surface as lithium ions did not insert into the graphite interlayers and accumulated at its edged planes. Increasing the pathways for lithium ion intercalation could facilitate lithium intercalation and reduce lithium deposition.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2011.10.058</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemistry ; Deposition ; Electrochemistry ; Exact sciences and technology ; General and physical chemistry ; Graphite ; Graphitization ; Intercalation ; Interlayers ; Kinetics and mechanism of reactions ; Li deposition ; Li intercalation ; Lithium ; Lithium ions ; Reduction (electrolytic) ; Rhombohedral phase</subject><ispartof>Journal of power sources, 2012-02, Vol.199, p.293-299</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-e233b31cc5e689d3a8b51cf72280e6f784ec3eb81b32c6ebde53bde576069f733</citedby><cites>FETCH-LOGICAL-c473t-e233b31cc5e689d3a8b51cf72280e6f784ec3eb81b32c6ebde53bde576069f733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2011.10.058$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25512069$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Gumjae</creatorcontrib><creatorcontrib>Gunawardhana, Nanda</creatorcontrib><creatorcontrib>Nakamura, Hiroyoshi</creatorcontrib><creatorcontrib>Lee, Yun-Sung</creatorcontrib><creatorcontrib>Yoshio, Masaki</creatorcontrib><title>The study of electrochemical properties and lithium deposition of graphite at low temperature</title><title>Journal of power sources</title><description>► The graphite samples are electrochemically investigated at 25 °C and −5 °C. ► The graphite with high graphitization shows a big reduced capacity by decreasing temperature. ► The graphite with higher rhombohedral phase in graphite can easily form a lithium deposition on the graphite surface. The electrochemical properties of graphite with various degrees of graphitization, contents of rhombohedral phase, and surface areas were electrochemically investigated at 25 °C and −5 °C. The degree of graphitization and the amount of rhombohedral phase affected the samples’ lithium intercalation/deintercalation and surface deposition. The reductions of electrolyte conductivity and lithium ion diffusion in the graphite interlayer at −5 °C lowered the graphite's capacity. Lithium deposition also occurred on the graphite's surface. Highly graphitized samples were affected greatly by temperature, showing large capacity loss at low temperature. Increased rhombohedral phase facilitated lithium deposition on the graphite's surface as lithium ions did not insert into the graphite interlayers and accumulated at its edged planes. Increasing the pathways for lithium ion intercalation could facilitate lithium intercalation and reduce lithium deposition.</description><subject>Chemistry</subject><subject>Deposition</subject><subject>Electrochemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Graphite</subject><subject>Graphitization</subject><subject>Intercalation</subject><subject>Interlayers</subject><subject>Kinetics and mechanism of reactions</subject><subject>Li deposition</subject><subject>Li intercalation</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Reduction (electrolytic)</subject><subject>Rhombohedral phase</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkc1KxDAURoMoOI6-gmQjumlNGtNkdor4B4KbcSkhTW-dDG1Tk1SZtzdlRpe6SeByvnyXE4ROKckpoeXlOl8P7iu40ecFoTQNc8LlHppRKVhWCM730YwwITMhODtERyGsCUmkIDP0tlwBDnGsN9g1GFow0Tuzgs4a3eLBuwF8tBCw7mvc2riyY4drGFyw0bp-Cr17PaxsBKwjbt0XjtClkI6jh2N00Og2wMnunqPX-7vl7WP2_PLwdHvznJkrwWIGBWMVo8ZwKOWiZlpWnJpGFIUkUDZCXoFhUElascKUUNXA2XSIkpSLRjA2R-fbd9PCHyOEqDobDLSt7sGNQS2oTEqYIIm8-JOkQghKJZUyoeUWNd6F4KFRg7ed9htFiZrMq7X6Ma8m89N8qpmjs12HDsli43VvbPhNF5zTIi2euOstB0nNpwWvgrHQG6itT_-gamf_q_oG_7SfIw</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Park, Gumjae</creator><creator>Gunawardhana, Nanda</creator><creator>Nakamura, Hiroyoshi</creator><creator>Lee, Yun-Sung</creator><creator>Yoshio, Masaki</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20120201</creationdate><title>The study of electrochemical properties and lithium deposition of graphite at low temperature</title><author>Park, Gumjae ; Gunawardhana, Nanda ; Nakamura, Hiroyoshi ; Lee, Yun-Sung ; Yoshio, Masaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-e233b31cc5e689d3a8b51cf72280e6f784ec3eb81b32c6ebde53bde576069f733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chemistry</topic><topic>Deposition</topic><topic>Electrochemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Graphite</topic><topic>Graphitization</topic><topic>Intercalation</topic><topic>Interlayers</topic><topic>Kinetics and mechanism of reactions</topic><topic>Li deposition</topic><topic>Li intercalation</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Reduction (electrolytic)</topic><topic>Rhombohedral phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Gumjae</creatorcontrib><creatorcontrib>Gunawardhana, Nanda</creatorcontrib><creatorcontrib>Nakamura, Hiroyoshi</creatorcontrib><creatorcontrib>Lee, Yun-Sung</creatorcontrib><creatorcontrib>Yoshio, Masaki</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Gumjae</au><au>Gunawardhana, Nanda</au><au>Nakamura, Hiroyoshi</au><au>Lee, Yun-Sung</au><au>Yoshio, Masaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The study of electrochemical properties and lithium deposition of graphite at low temperature</atitle><jtitle>Journal of power sources</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>199</volume><spage>293</spage><epage>299</epage><pages>293-299</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>► The graphite samples are electrochemically investigated at 25 °C and −5 °C. ► The graphite with high graphitization shows a big reduced capacity by decreasing temperature. ► The graphite with higher rhombohedral phase in graphite can easily form a lithium deposition on the graphite surface. The electrochemical properties of graphite with various degrees of graphitization, contents of rhombohedral phase, and surface areas were electrochemically investigated at 25 °C and −5 °C. The degree of graphitization and the amount of rhombohedral phase affected the samples’ lithium intercalation/deintercalation and surface deposition. The reductions of electrolyte conductivity and lithium ion diffusion in the graphite interlayer at −5 °C lowered the graphite's capacity. Lithium deposition also occurred on the graphite's surface. Highly graphitized samples were affected greatly by temperature, showing large capacity loss at low temperature. Increased rhombohedral phase facilitated lithium deposition on the graphite's surface as lithium ions did not insert into the graphite interlayers and accumulated at its edged planes. Increasing the pathways for lithium ion intercalation could facilitate lithium intercalation and reduce lithium deposition.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2011.10.058</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2012-02, Vol.199, p.293-299
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_918058370
source Elsevier ScienceDirect Journals
subjects Chemistry
Deposition
Electrochemistry
Exact sciences and technology
General and physical chemistry
Graphite
Graphitization
Intercalation
Interlayers
Kinetics and mechanism of reactions
Li deposition
Li intercalation
Lithium
Lithium ions
Reduction (electrolytic)
Rhombohedral phase
title The study of electrochemical properties and lithium deposition of graphite at low temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20study%20of%20electrochemical%20properties%20and%20lithium%20deposition%20of%20graphite%20at%20low%20temperature&rft.jtitle=Journal%20of%20power%20sources&rft.au=Park,%20Gumjae&rft.date=2012-02-01&rft.volume=199&rft.spage=293&rft.epage=299&rft.pages=293-299&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2011.10.058&rft_dat=%3Cproquest_cross%3E918058370%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777118188&rft_id=info:pmid/&rft_els_id=S0378775311020519&rfr_iscdi=true