The study of electrochemical properties and lithium deposition of graphite at low temperature
► The graphite samples are electrochemically investigated at 25 °C and −5 °C. ► The graphite with high graphitization shows a big reduced capacity by decreasing temperature. ► The graphite with higher rhombohedral phase in graphite can easily form a lithium deposition on the graphite surface. The el...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2012-02, Vol.199, p.293-299 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 299 |
---|---|
container_issue | |
container_start_page | 293 |
container_title | Journal of power sources |
container_volume | 199 |
creator | Park, Gumjae Gunawardhana, Nanda Nakamura, Hiroyoshi Lee, Yun-Sung Yoshio, Masaki |
description | ► The graphite samples are electrochemically investigated at 25
°C and −5
°C. ► The graphite with high graphitization shows a big reduced capacity by decreasing temperature. ► The graphite with higher rhombohedral phase in graphite can easily form a lithium deposition on the graphite surface.
The electrochemical properties of graphite with various degrees of graphitization, contents of rhombohedral phase, and surface areas were electrochemically investigated at 25
°C and −5
°C. The degree of graphitization and the amount of rhombohedral phase affected the samples’ lithium intercalation/deintercalation and surface deposition. The reductions of electrolyte conductivity and lithium ion diffusion in the graphite interlayer at −5
°C lowered the graphite's capacity. Lithium deposition also occurred on the graphite's surface. Highly graphitized samples were affected greatly by temperature, showing large capacity loss at low temperature. Increased rhombohedral phase facilitated lithium deposition on the graphite's surface as lithium ions did not insert into the graphite interlayers and accumulated at its edged planes. Increasing the pathways for lithium ion intercalation could facilitate lithium intercalation and reduce lithium deposition. |
doi_str_mv | 10.1016/j.jpowsour.2011.10.058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918058370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775311020519</els_id><sourcerecordid>918058370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-e233b31cc5e689d3a8b51cf72280e6f784ec3eb81b32c6ebde53bde576069f733</originalsourceid><addsrcrecordid>eNqFkc1KxDAURoMoOI6-gmQjumlNGtNkdor4B4KbcSkhTW-dDG1Tk1SZtzdlRpe6SeByvnyXE4ROKckpoeXlOl8P7iu40ecFoTQNc8LlHppRKVhWCM730YwwITMhODtERyGsCUmkIDP0tlwBDnGsN9g1GFow0Tuzgs4a3eLBuwF8tBCw7mvc2riyY4drGFyw0bp-Cr17PaxsBKwjbt0XjtClkI6jh2N00Og2wMnunqPX-7vl7WP2_PLwdHvznJkrwWIGBWMVo8ZwKOWiZlpWnJpGFIUkUDZCXoFhUElascKUUNXA2XSIkpSLRjA2R-fbd9PCHyOEqDobDLSt7sGNQS2oTEqYIIm8-JOkQghKJZUyoeUWNd6F4KFRg7ed9htFiZrMq7X6Ma8m89N8qpmjs12HDsli43VvbPhNF5zTIi2euOstB0nNpwWvgrHQG6itT_-gamf_q_oG_7SfIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777118188</pqid></control><display><type>article</type><title>The study of electrochemical properties and lithium deposition of graphite at low temperature</title><source>Elsevier ScienceDirect Journals</source><creator>Park, Gumjae ; Gunawardhana, Nanda ; Nakamura, Hiroyoshi ; Lee, Yun-Sung ; Yoshio, Masaki</creator><creatorcontrib>Park, Gumjae ; Gunawardhana, Nanda ; Nakamura, Hiroyoshi ; Lee, Yun-Sung ; Yoshio, Masaki</creatorcontrib><description>► The graphite samples are electrochemically investigated at 25
°C and −5
°C. ► The graphite with high graphitization shows a big reduced capacity by decreasing temperature. ► The graphite with higher rhombohedral phase in graphite can easily form a lithium deposition on the graphite surface.
The electrochemical properties of graphite with various degrees of graphitization, contents of rhombohedral phase, and surface areas were electrochemically investigated at 25
°C and −5
°C. The degree of graphitization and the amount of rhombohedral phase affected the samples’ lithium intercalation/deintercalation and surface deposition. The reductions of electrolyte conductivity and lithium ion diffusion in the graphite interlayer at −5
°C lowered the graphite's capacity. Lithium deposition also occurred on the graphite's surface. Highly graphitized samples were affected greatly by temperature, showing large capacity loss at low temperature. Increased rhombohedral phase facilitated lithium deposition on the graphite's surface as lithium ions did not insert into the graphite interlayers and accumulated at its edged planes. Increasing the pathways for lithium ion intercalation could facilitate lithium intercalation and reduce lithium deposition.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2011.10.058</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemistry ; Deposition ; Electrochemistry ; Exact sciences and technology ; General and physical chemistry ; Graphite ; Graphitization ; Intercalation ; Interlayers ; Kinetics and mechanism of reactions ; Li deposition ; Li intercalation ; Lithium ; Lithium ions ; Reduction (electrolytic) ; Rhombohedral phase</subject><ispartof>Journal of power sources, 2012-02, Vol.199, p.293-299</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-e233b31cc5e689d3a8b51cf72280e6f784ec3eb81b32c6ebde53bde576069f733</citedby><cites>FETCH-LOGICAL-c473t-e233b31cc5e689d3a8b51cf72280e6f784ec3eb81b32c6ebde53bde576069f733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2011.10.058$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25512069$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Gumjae</creatorcontrib><creatorcontrib>Gunawardhana, Nanda</creatorcontrib><creatorcontrib>Nakamura, Hiroyoshi</creatorcontrib><creatorcontrib>Lee, Yun-Sung</creatorcontrib><creatorcontrib>Yoshio, Masaki</creatorcontrib><title>The study of electrochemical properties and lithium deposition of graphite at low temperature</title><title>Journal of power sources</title><description>► The graphite samples are electrochemically investigated at 25
°C and −5
°C. ► The graphite with high graphitization shows a big reduced capacity by decreasing temperature. ► The graphite with higher rhombohedral phase in graphite can easily form a lithium deposition on the graphite surface.
The electrochemical properties of graphite with various degrees of graphitization, contents of rhombohedral phase, and surface areas were electrochemically investigated at 25
°C and −5
°C. The degree of graphitization and the amount of rhombohedral phase affected the samples’ lithium intercalation/deintercalation and surface deposition. The reductions of electrolyte conductivity and lithium ion diffusion in the graphite interlayer at −5
°C lowered the graphite's capacity. Lithium deposition also occurred on the graphite's surface. Highly graphitized samples were affected greatly by temperature, showing large capacity loss at low temperature. Increased rhombohedral phase facilitated lithium deposition on the graphite's surface as lithium ions did not insert into the graphite interlayers and accumulated at its edged planes. Increasing the pathways for lithium ion intercalation could facilitate lithium intercalation and reduce lithium deposition.</description><subject>Chemistry</subject><subject>Deposition</subject><subject>Electrochemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Graphite</subject><subject>Graphitization</subject><subject>Intercalation</subject><subject>Interlayers</subject><subject>Kinetics and mechanism of reactions</subject><subject>Li deposition</subject><subject>Li intercalation</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Reduction (electrolytic)</subject><subject>Rhombohedral phase</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkc1KxDAURoMoOI6-gmQjumlNGtNkdor4B4KbcSkhTW-dDG1Tk1SZtzdlRpe6SeByvnyXE4ROKckpoeXlOl8P7iu40ecFoTQNc8LlHppRKVhWCM730YwwITMhODtERyGsCUmkIDP0tlwBDnGsN9g1GFow0Tuzgs4a3eLBuwF8tBCw7mvc2riyY4drGFyw0bp-Cr17PaxsBKwjbt0XjtClkI6jh2N00Og2wMnunqPX-7vl7WP2_PLwdHvznJkrwWIGBWMVo8ZwKOWiZlpWnJpGFIUkUDZCXoFhUElascKUUNXA2XSIkpSLRjA2R-fbd9PCHyOEqDobDLSt7sGNQS2oTEqYIIm8-JOkQghKJZUyoeUWNd6F4KFRg7ed9htFiZrMq7X6Ma8m89N8qpmjs12HDsli43VvbPhNF5zTIi2euOstB0nNpwWvgrHQG6itT_-gamf_q_oG_7SfIw</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Park, Gumjae</creator><creator>Gunawardhana, Nanda</creator><creator>Nakamura, Hiroyoshi</creator><creator>Lee, Yun-Sung</creator><creator>Yoshio, Masaki</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20120201</creationdate><title>The study of electrochemical properties and lithium deposition of graphite at low temperature</title><author>Park, Gumjae ; Gunawardhana, Nanda ; Nakamura, Hiroyoshi ; Lee, Yun-Sung ; Yoshio, Masaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-e233b31cc5e689d3a8b51cf72280e6f784ec3eb81b32c6ebde53bde576069f733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chemistry</topic><topic>Deposition</topic><topic>Electrochemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Graphite</topic><topic>Graphitization</topic><topic>Intercalation</topic><topic>Interlayers</topic><topic>Kinetics and mechanism of reactions</topic><topic>Li deposition</topic><topic>Li intercalation</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Reduction (electrolytic)</topic><topic>Rhombohedral phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Gumjae</creatorcontrib><creatorcontrib>Gunawardhana, Nanda</creatorcontrib><creatorcontrib>Nakamura, Hiroyoshi</creatorcontrib><creatorcontrib>Lee, Yun-Sung</creatorcontrib><creatorcontrib>Yoshio, Masaki</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Gumjae</au><au>Gunawardhana, Nanda</au><au>Nakamura, Hiroyoshi</au><au>Lee, Yun-Sung</au><au>Yoshio, Masaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The study of electrochemical properties and lithium deposition of graphite at low temperature</atitle><jtitle>Journal of power sources</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>199</volume><spage>293</spage><epage>299</epage><pages>293-299</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>► The graphite samples are electrochemically investigated at 25
°C and −5
°C. ► The graphite with high graphitization shows a big reduced capacity by decreasing temperature. ► The graphite with higher rhombohedral phase in graphite can easily form a lithium deposition on the graphite surface.
The electrochemical properties of graphite with various degrees of graphitization, contents of rhombohedral phase, and surface areas were electrochemically investigated at 25
°C and −5
°C. The degree of graphitization and the amount of rhombohedral phase affected the samples’ lithium intercalation/deintercalation and surface deposition. The reductions of electrolyte conductivity and lithium ion diffusion in the graphite interlayer at −5
°C lowered the graphite's capacity. Lithium deposition also occurred on the graphite's surface. Highly graphitized samples were affected greatly by temperature, showing large capacity loss at low temperature. Increased rhombohedral phase facilitated lithium deposition on the graphite's surface as lithium ions did not insert into the graphite interlayers and accumulated at its edged planes. Increasing the pathways for lithium ion intercalation could facilitate lithium intercalation and reduce lithium deposition.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2011.10.058</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2012-02, Vol.199, p.293-299 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_918058370 |
source | Elsevier ScienceDirect Journals |
subjects | Chemistry Deposition Electrochemistry Exact sciences and technology General and physical chemistry Graphite Graphitization Intercalation Interlayers Kinetics and mechanism of reactions Li deposition Li intercalation Lithium Lithium ions Reduction (electrolytic) Rhombohedral phase |
title | The study of electrochemical properties and lithium deposition of graphite at low temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20study%20of%20electrochemical%20properties%20and%20lithium%20deposition%20of%20graphite%20at%20low%20temperature&rft.jtitle=Journal%20of%20power%20sources&rft.au=Park,%20Gumjae&rft.date=2012-02-01&rft.volume=199&rft.spage=293&rft.epage=299&rft.pages=293-299&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2011.10.058&rft_dat=%3Cproquest_cross%3E918058370%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777118188&rft_id=info:pmid/&rft_els_id=S0378775311020519&rfr_iscdi=true |