Complex Life Cycles and the Responses of Insects to Climate Change
Many organisms have complex life cycles with distinct life stages that experience different environmental conditions. How does the complexity of life cycles affect the ecological and evolutionary responses of organisms to climate change? We address this question by exploring several recent case stud...
Gespeichert in:
Veröffentlicht in: | Integrative and comparative biology 2011-11, Vol.51 (5), p.719-732 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 732 |
---|---|
container_issue | 5 |
container_start_page | 719 |
container_title | Integrative and comparative biology |
container_volume | 51 |
creator | Kingsolver, Joel G Arthur Woods, H Buckley, Lauren B Potter, Kristen A MacLean, Heidi J Higgins, Jessica K |
description | Many organisms have complex life cycles with distinct life stages that experience different environmental conditions. How does the complexity of life cycles affect the ecological and evolutionary responses of organisms to climate change? We address this question by exploring several recent case studies and synthetic analyses of insects. First, different life stages may inhabit different microhabitats, and may differ in their thermal sensitivities and other traits that are important for responses to climate. For example, the life stages of Manduca experience different patterns of thermal and hydric variability, and differ in tolerance to high temperatures. Second, life stages may differ in their mechanisms for adaptation to local climatic conditions. For example, in Colias, larvae in different geographic populations and species adapt to local climate via differences in optimal and maximal temperatures for feeding and growth, whereas adults adapt via differences in melanin of the wings and in other morphological traits. Third, we extend a recent analysis of the temperature-dependence of insect population growth to demonstrate how changes in temperature can differently impact juvenile survival and adult reproduction. In both temperate and tropical regions, high rates of adult reproduction in a given environment may not be realized if occasional, high temperatures prevent survival to maturity. This suggests that considering the differing responses of multiple life stages is essential to understand the ecological and evolutionary consequences of climate change. |
doi_str_mv | 10.1093/icb/icr015 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_918056430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41319644</jstor_id><oup_id>10.1093/icb/icr015</oup_id><sourcerecordid>41319644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-dbaceab28b258500205c848df5ea5af5b7ba7171ebefe075673fa985a8041a2c3</originalsourceid><addsrcrecordid>eNqF0c9rFTEQB_AgFlurF-_qIohQeDr5tckedVFbeCCoPYds3qTdx77NmuyC_e87ZWsPHvQQMmQ-DGS-jL3g8J5DIz_0oaOTgetH7IRrbTYGhHx8VyugupbH7GkpeyChgT9hx4IboWpuTtinNh2mAX9X2z5i1d6EAUvlx101X2P1HcuUxkIvKVYXVIS5VHOq2qE_-Jn4tR-v8Bk7in4o-Pz-PmWXXz7_bM83229fL9qP203QQs6bXecD-k7YTmirAQToYJXdRY1e-6g703nDDccOI4LRtZHRN1Z7C4p7EeQpe7fOnXL6tWCZ3aEvAYfBj5iW4hpuQddKwv8l0E5k3ViSb_6S-7Tkkb5BSGoua9CEzlYUciolY3RTpgXkG8fB3SXgKAG3JkD41f3EpTvg7oH-WTmBtytIy_TvQS9Xty9zyg9SccmbWinqv1770Sfnr3Jf3OUPAbymmKFR1spbfjCfEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903513605</pqid></control><display><type>article</type><title>Complex Life Cycles and the Responses of Insects to Climate Change</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Kingsolver, Joel G ; Arthur Woods, H ; Buckley, Lauren B ; Potter, Kristen A ; MacLean, Heidi J ; Higgins, Jessica K</creator><creatorcontrib>Kingsolver, Joel G ; Arthur Woods, H ; Buckley, Lauren B ; Potter, Kristen A ; MacLean, Heidi J ; Higgins, Jessica K</creatorcontrib><description>Many organisms have complex life cycles with distinct life stages that experience different environmental conditions. How does the complexity of life cycles affect the ecological and evolutionary responses of organisms to climate change? We address this question by exploring several recent case studies and synthetic analyses of insects. First, different life stages may inhabit different microhabitats, and may differ in their thermal sensitivities and other traits that are important for responses to climate. For example, the life stages of Manduca experience different patterns of thermal and hydric variability, and differ in tolerance to high temperatures. Second, life stages may differ in their mechanisms for adaptation to local climatic conditions. For example, in Colias, larvae in different geographic populations and species adapt to local climate via differences in optimal and maximal temperatures for feeding and growth, whereas adults adapt via differences in melanin of the wings and in other morphological traits. Third, we extend a recent analysis of the temperature-dependence of insect population growth to demonstrate how changes in temperature can differently impact juvenile survival and adult reproduction. In both temperate and tropical regions, high rates of adult reproduction in a given environment may not be realized if occasional, high temperatures prevent survival to maturity. This suggests that considering the differing responses of multiple life stages is essential to understand the ecological and evolutionary consequences of climate change.</description><identifier>ISSN: 1540-7063</identifier><identifier>EISSN: 1557-7023</identifier><identifier>DOI: 10.1093/icb/icr015</identifier><identifier>PMID: 21724617</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>A Synthetic Approach to the Response of Organisms to Climate Change: The Role of Thermal Adaptation ; Acclimatization ; adults ; Altitude ; Ambient temperature ; animal adaptation ; animal morphology ; Animal populations ; Animals ; Biological Evolution ; Body Temperature Regulation ; Butterflies ; Butterflies - growth & development ; Butterflies - physiology ; case studies ; Climate Change ; Climate change adaptation ; Climate models ; climatic factors ; Colias ; Ecological competition ; Ecosystem ; Eggs ; Evolution ; Evolutionary biology ; Female ; heat tolerance ; High temperature ; insect ecology ; Insect larvae ; Insects ; juveniles ; larvae ; life cycle (organisms) ; Life Cycle Stages - physiology ; Life cycles ; Manduca ; Manduca - growth & development ; Manduca - physiology ; melanin ; Microclimate ; microhabitats ; population growth ; reproduction ; Stress, Physiological ; survival rate ; Temperature ; Tropical Climate ; tropics ; wings ; Zygote</subject><ispartof>Integrative and comparative biology, 2011-11, Vol.51 (5), p.719-732</ispartof><rights>2011 The Society for Integrative and Comparative Biology</rights><rights>The Author 2011. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com. 2011</rights><rights>The Author 2011. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.</rights><rights>Copyright Oxford Publishing Limited(England) Nov 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-dbaceab28b258500205c848df5ea5af5b7ba7171ebefe075673fa985a8041a2c3</citedby><cites>FETCH-LOGICAL-c523t-dbaceab28b258500205c848df5ea5af5b7ba7171ebefe075673fa985a8041a2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41319644$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41319644$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1578,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21724617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kingsolver, Joel G</creatorcontrib><creatorcontrib>Arthur Woods, H</creatorcontrib><creatorcontrib>Buckley, Lauren B</creatorcontrib><creatorcontrib>Potter, Kristen A</creatorcontrib><creatorcontrib>MacLean, Heidi J</creatorcontrib><creatorcontrib>Higgins, Jessica K</creatorcontrib><title>Complex Life Cycles and the Responses of Insects to Climate Change</title><title>Integrative and comparative biology</title><addtitle>Integr Comp Biol</addtitle><description>Many organisms have complex life cycles with distinct life stages that experience different environmental conditions. How does the complexity of life cycles affect the ecological and evolutionary responses of organisms to climate change? We address this question by exploring several recent case studies and synthetic analyses of insects. First, different life stages may inhabit different microhabitats, and may differ in their thermal sensitivities and other traits that are important for responses to climate. For example, the life stages of Manduca experience different patterns of thermal and hydric variability, and differ in tolerance to high temperatures. Second, life stages may differ in their mechanisms for adaptation to local climatic conditions. For example, in Colias, larvae in different geographic populations and species adapt to local climate via differences in optimal and maximal temperatures for feeding and growth, whereas adults adapt via differences in melanin of the wings and in other morphological traits. Third, we extend a recent analysis of the temperature-dependence of insect population growth to demonstrate how changes in temperature can differently impact juvenile survival and adult reproduction. In both temperate and tropical regions, high rates of adult reproduction in a given environment may not be realized if occasional, high temperatures prevent survival to maturity. This suggests that considering the differing responses of multiple life stages is essential to understand the ecological and evolutionary consequences of climate change.</description><subject>A Synthetic Approach to the Response of Organisms to Climate Change: The Role of Thermal Adaptation</subject><subject>Acclimatization</subject><subject>adults</subject><subject>Altitude</subject><subject>Ambient temperature</subject><subject>animal adaptation</subject><subject>animal morphology</subject><subject>Animal populations</subject><subject>Animals</subject><subject>Biological Evolution</subject><subject>Body Temperature Regulation</subject><subject>Butterflies</subject><subject>Butterflies - growth & development</subject><subject>Butterflies - physiology</subject><subject>case studies</subject><subject>Climate Change</subject><subject>Climate change adaptation</subject><subject>Climate models</subject><subject>climatic factors</subject><subject>Colias</subject><subject>Ecological competition</subject><subject>Ecosystem</subject><subject>Eggs</subject><subject>Evolution</subject><subject>Evolutionary biology</subject><subject>Female</subject><subject>heat tolerance</subject><subject>High temperature</subject><subject>insect ecology</subject><subject>Insect larvae</subject><subject>Insects</subject><subject>juveniles</subject><subject>larvae</subject><subject>life cycle (organisms)</subject><subject>Life Cycle Stages - physiology</subject><subject>Life cycles</subject><subject>Manduca</subject><subject>Manduca - growth & development</subject><subject>Manduca - physiology</subject><subject>melanin</subject><subject>Microclimate</subject><subject>microhabitats</subject><subject>population growth</subject><subject>reproduction</subject><subject>Stress, Physiological</subject><subject>survival rate</subject><subject>Temperature</subject><subject>Tropical Climate</subject><subject>tropics</subject><subject>wings</subject><subject>Zygote</subject><issn>1540-7063</issn><issn>1557-7023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9rFTEQB_AgFlurF-_qIohQeDr5tckedVFbeCCoPYds3qTdx77NmuyC_e87ZWsPHvQQMmQ-DGS-jL3g8J5DIz_0oaOTgetH7IRrbTYGhHx8VyugupbH7GkpeyChgT9hx4IboWpuTtinNh2mAX9X2z5i1d6EAUvlx101X2P1HcuUxkIvKVYXVIS5VHOq2qE_-Jn4tR-v8Bk7in4o-Pz-PmWXXz7_bM83229fL9qP203QQs6bXecD-k7YTmirAQToYJXdRY1e-6g703nDDccOI4LRtZHRN1Z7C4p7EeQpe7fOnXL6tWCZ3aEvAYfBj5iW4hpuQddKwv8l0E5k3ViSb_6S-7Tkkb5BSGoua9CEzlYUciolY3RTpgXkG8fB3SXgKAG3JkD41f3EpTvg7oH-WTmBtytIy_TvQS9Xty9zyg9SccmbWinqv1770Sfnr3Jf3OUPAbymmKFR1spbfjCfEg</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Kingsolver, Joel G</creator><creator>Arthur Woods, H</creator><creator>Buckley, Lauren B</creator><creator>Potter, Kristen A</creator><creator>MacLean, Heidi J</creator><creator>Higgins, Jessica K</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7ST</scope><scope>7U6</scope></search><sort><creationdate>20111101</creationdate><title>Complex Life Cycles and the Responses of Insects to Climate Change</title><author>Kingsolver, Joel G ; Arthur Woods, H ; Buckley, Lauren B ; Potter, Kristen A ; MacLean, Heidi J ; Higgins, Jessica K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-dbaceab28b258500205c848df5ea5af5b7ba7171ebefe075673fa985a8041a2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A Synthetic Approach to the Response of Organisms to Climate Change: The Role of Thermal Adaptation</topic><topic>Acclimatization</topic><topic>adults</topic><topic>Altitude</topic><topic>Ambient temperature</topic><topic>animal adaptation</topic><topic>animal morphology</topic><topic>Animal populations</topic><topic>Animals</topic><topic>Biological Evolution</topic><topic>Body Temperature Regulation</topic><topic>Butterflies</topic><topic>Butterflies - growth & development</topic><topic>Butterflies - physiology</topic><topic>case studies</topic><topic>Climate Change</topic><topic>Climate change adaptation</topic><topic>Climate models</topic><topic>climatic factors</topic><topic>Colias</topic><topic>Ecological competition</topic><topic>Ecosystem</topic><topic>Eggs</topic><topic>Evolution</topic><topic>Evolutionary biology</topic><topic>Female</topic><topic>heat tolerance</topic><topic>High temperature</topic><topic>insect ecology</topic><topic>Insect larvae</topic><topic>Insects</topic><topic>juveniles</topic><topic>larvae</topic><topic>life cycle (organisms)</topic><topic>Life Cycle Stages - physiology</topic><topic>Life cycles</topic><topic>Manduca</topic><topic>Manduca - growth & development</topic><topic>Manduca - physiology</topic><topic>melanin</topic><topic>Microclimate</topic><topic>microhabitats</topic><topic>population growth</topic><topic>reproduction</topic><topic>Stress, Physiological</topic><topic>survival rate</topic><topic>Temperature</topic><topic>Tropical Climate</topic><topic>tropics</topic><topic>wings</topic><topic>Zygote</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kingsolver, Joel G</creatorcontrib><creatorcontrib>Arthur Woods, H</creatorcontrib><creatorcontrib>Buckley, Lauren B</creatorcontrib><creatorcontrib>Potter, Kristen A</creatorcontrib><creatorcontrib>MacLean, Heidi J</creatorcontrib><creatorcontrib>Higgins, Jessica K</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Integrative and comparative biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kingsolver, Joel G</au><au>Arthur Woods, H</au><au>Buckley, Lauren B</au><au>Potter, Kristen A</au><au>MacLean, Heidi J</au><au>Higgins, Jessica K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex Life Cycles and the Responses of Insects to Climate Change</atitle><jtitle>Integrative and comparative biology</jtitle><addtitle>Integr Comp Biol</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>51</volume><issue>5</issue><spage>719</spage><epage>732</epage><pages>719-732</pages><issn>1540-7063</issn><eissn>1557-7023</eissn><abstract>Many organisms have complex life cycles with distinct life stages that experience different environmental conditions. How does the complexity of life cycles affect the ecological and evolutionary responses of organisms to climate change? We address this question by exploring several recent case studies and synthetic analyses of insects. First, different life stages may inhabit different microhabitats, and may differ in their thermal sensitivities and other traits that are important for responses to climate. For example, the life stages of Manduca experience different patterns of thermal and hydric variability, and differ in tolerance to high temperatures. Second, life stages may differ in their mechanisms for adaptation to local climatic conditions. For example, in Colias, larvae in different geographic populations and species adapt to local climate via differences in optimal and maximal temperatures for feeding and growth, whereas adults adapt via differences in melanin of the wings and in other morphological traits. Third, we extend a recent analysis of the temperature-dependence of insect population growth to demonstrate how changes in temperature can differently impact juvenile survival and adult reproduction. In both temperate and tropical regions, high rates of adult reproduction in a given environment may not be realized if occasional, high temperatures prevent survival to maturity. This suggests that considering the differing responses of multiple life stages is essential to understand the ecological and evolutionary consequences of climate change.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>21724617</pmid><doi>10.1093/icb/icr015</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1540-7063 |
ispartof | Integrative and comparative biology, 2011-11, Vol.51 (5), p.719-732 |
issn | 1540-7063 1557-7023 |
language | eng |
recordid | cdi_proquest_miscellaneous_918056430 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | A Synthetic Approach to the Response of Organisms to Climate Change: The Role of Thermal Adaptation Acclimatization adults Altitude Ambient temperature animal adaptation animal morphology Animal populations Animals Biological Evolution Body Temperature Regulation Butterflies Butterflies - growth & development Butterflies - physiology case studies Climate Change Climate change adaptation Climate models climatic factors Colias Ecological competition Ecosystem Eggs Evolution Evolutionary biology Female heat tolerance High temperature insect ecology Insect larvae Insects juveniles larvae life cycle (organisms) Life Cycle Stages - physiology Life cycles Manduca Manduca - growth & development Manduca - physiology melanin Microclimate microhabitats population growth reproduction Stress, Physiological survival rate Temperature Tropical Climate tropics wings Zygote |
title | Complex Life Cycles and the Responses of Insects to Climate Change |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20Life%20Cycles%20and%20the%20Responses%20of%20Insects%20to%20Climate%20Change&rft.jtitle=Integrative%20and%20comparative%20biology&rft.au=Kingsolver,%20Joel%20G&rft.date=2011-11-01&rft.volume=51&rft.issue=5&rft.spage=719&rft.epage=732&rft.pages=719-732&rft.issn=1540-7063&rft.eissn=1557-7023&rft_id=info:doi/10.1093/icb/icr015&rft_dat=%3Cjstor_proqu%3E41319644%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=903513605&rft_id=info:pmid/21724617&rft_jstor_id=41319644&rft_oup_id=10.1093/icb/icr015&rfr_iscdi=true |