PVDF microbelts for harvesting energy from respiration

In this paper, we report a technique that uses piezoelectric polyvinylidene fluoride (PVDF) microbelts to convert the energy from low-speed air flow to electricity via their resonant oscillation. The micrometre thick PVDF thin films were fabricated by a top-down reactive ion etching process, where t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2011-11, Vol.4 (11), p.4508-4512
Hauptverfasser: Sun, Chengliang, Shi, Jian, Bayerl, Dylan J., Wang, Xudong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4512
container_issue 11
container_start_page 4508
container_title Energy & environmental science
container_volume 4
creator Sun, Chengliang
Shi, Jian
Bayerl, Dylan J.
Wang, Xudong
description In this paper, we report a technique that uses piezoelectric polyvinylidene fluoride (PVDF) microbelts to convert the energy from low-speed air flow to electricity via their resonant oscillation. The micrometre thick PVDF thin films were fabricated by a top-down reactive ion etching process, where the thickness was controlled by etching time and the piezoelectric phase was well preserved. The thickness, air flow speed and electrical output relationship was predicted theoretically and characterized experimentally. The PVDF microbelts were able to generate sufficient electrical energy from low speed air flow for the sustained operation of small electronic devices. Their capability for harvesting energy from simulated respiration was also demonstrated.
doi_str_mv 10.1039/c1ee02241e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918055788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>918055788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-d7726d7ee7a83864b37e530df18ff60e636a535fee65482bb432b34c2b4e49633</originalsourceid><addsrcrecordid>eNpFkE1LAzEYhIMoWKsXf0FugrCa72SPUq0KBT2o15DsvqmR3c2abIX-eytVPM0cHoaZQeickitKeH3dUADCmKBwgGZUS1FJTdThn1c1O0YnpXwQohjR9Qyp57fbJe5jk5OHbio4pIzfXf6CMsVhjWGAvN7ikFOPM5QxZjfFNJyio-C6Ame_Okevy7uXxUO1erp_XNysqoYpPlWt1ky1GkA7w40SnmuQnLSBmhAUAcWVk1wGACWFYd4LzjwXDfMCRK04n6OLfe6Y0-dm18n2sTTQdW6AtCm2poZIqY3ZkZd7creklAzBjjn2Lm8tJfbnG_v_Df8GIWxWeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918055788</pqid></control><display><type>article</type><title>PVDF microbelts for harvesting energy from respiration</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Sun, Chengliang ; Shi, Jian ; Bayerl, Dylan J. ; Wang, Xudong</creator><creatorcontrib>Sun, Chengliang ; Shi, Jian ; Bayerl, Dylan J. ; Wang, Xudong</creatorcontrib><description>In this paper, we report a technique that uses piezoelectric polyvinylidene fluoride (PVDF) microbelts to convert the energy from low-speed air flow to electricity via their resonant oscillation. The micrometre thick PVDF thin films were fabricated by a top-down reactive ion etching process, where the thickness was controlled by etching time and the piezoelectric phase was well preserved. The thickness, air flow speed and electrical output relationship was predicted theoretically and characterized experimentally. The PVDF microbelts were able to generate sufficient electrical energy from low speed air flow for the sustained operation of small electronic devices. Their capability for harvesting energy from simulated respiration was also demonstrated.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c1ee02241e</identifier><language>eng</language><ispartof>Energy &amp; environmental science, 2011-11, Vol.4 (11), p.4508-4512</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-d7726d7ee7a83864b37e530df18ff60e636a535fee65482bb432b34c2b4e49633</citedby><cites>FETCH-LOGICAL-c263t-d7726d7ee7a83864b37e530df18ff60e636a535fee65482bb432b34c2b4e49633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sun, Chengliang</creatorcontrib><creatorcontrib>Shi, Jian</creatorcontrib><creatorcontrib>Bayerl, Dylan J.</creatorcontrib><creatorcontrib>Wang, Xudong</creatorcontrib><title>PVDF microbelts for harvesting energy from respiration</title><title>Energy &amp; environmental science</title><description>In this paper, we report a technique that uses piezoelectric polyvinylidene fluoride (PVDF) microbelts to convert the energy from low-speed air flow to electricity via their resonant oscillation. The micrometre thick PVDF thin films were fabricated by a top-down reactive ion etching process, where the thickness was controlled by etching time and the piezoelectric phase was well preserved. The thickness, air flow speed and electrical output relationship was predicted theoretically and characterized experimentally. The PVDF microbelts were able to generate sufficient electrical energy from low speed air flow for the sustained operation of small electronic devices. Their capability for harvesting energy from simulated respiration was also demonstrated.</description><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEYhIMoWKsXf0FugrCa72SPUq0KBT2o15DsvqmR3c2abIX-eytVPM0cHoaZQeickitKeH3dUADCmKBwgGZUS1FJTdThn1c1O0YnpXwQohjR9Qyp57fbJe5jk5OHbio4pIzfXf6CMsVhjWGAvN7ikFOPM5QxZjfFNJyio-C6Ame_Okevy7uXxUO1erp_XNysqoYpPlWt1ky1GkA7w40SnmuQnLSBmhAUAcWVk1wGACWFYd4LzjwXDfMCRK04n6OLfe6Y0-dm18n2sTTQdW6AtCm2poZIqY3ZkZd7creklAzBjjn2Lm8tJfbnG_v_Df8GIWxWeg</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Sun, Chengliang</creator><creator>Shi, Jian</creator><creator>Bayerl, Dylan J.</creator><creator>Wang, Xudong</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20111101</creationdate><title>PVDF microbelts for harvesting energy from respiration</title><author>Sun, Chengliang ; Shi, Jian ; Bayerl, Dylan J. ; Wang, Xudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-d7726d7ee7a83864b37e530df18ff60e636a535fee65482bb432b34c2b4e49633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Chengliang</creatorcontrib><creatorcontrib>Shi, Jian</creatorcontrib><creatorcontrib>Bayerl, Dylan J.</creatorcontrib><creatorcontrib>Wang, Xudong</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Chengliang</au><au>Shi, Jian</au><au>Bayerl, Dylan J.</au><au>Wang, Xudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PVDF microbelts for harvesting energy from respiration</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>4</volume><issue>11</issue><spage>4508</spage><epage>4512</epage><pages>4508-4512</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>In this paper, we report a technique that uses piezoelectric polyvinylidene fluoride (PVDF) microbelts to convert the energy from low-speed air flow to electricity via their resonant oscillation. The micrometre thick PVDF thin films were fabricated by a top-down reactive ion etching process, where the thickness was controlled by etching time and the piezoelectric phase was well preserved. The thickness, air flow speed and electrical output relationship was predicted theoretically and characterized experimentally. The PVDF microbelts were able to generate sufficient electrical energy from low speed air flow for the sustained operation of small electronic devices. Their capability for harvesting energy from simulated respiration was also demonstrated.</abstract><doi>10.1039/c1ee02241e</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2011-11, Vol.4 (11), p.4508-4512
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_miscellaneous_918055788
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title PVDF microbelts for harvesting energy from respiration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PVDF%20microbelts%20for%20harvesting%20energy%20from%20respiration&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Sun,%20Chengliang&rft.date=2011-11-01&rft.volume=4&rft.issue=11&rft.spage=4508&rft.epage=4512&rft.pages=4508-4512&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c1ee02241e&rft_dat=%3Cproquest_cross%3E918055788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918055788&rft_id=info:pmid/&rfr_iscdi=true