Three-dimensional poly(1,8-octanediol–co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes
The objective of this study was to evaluate the coupled effects of three-dimensional poly(1,8-octanediol–co-citrate) (POC) scaffold pore shape and permeability on chondrogenesis using primary chondrocytes in vivo. Chondrogenesis was characterized as cartilage matrix formation by sulfated glycosamino...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2011-02, Vol.7 (2), p.505-514 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 514 |
---|---|
container_issue | 2 |
container_start_page | 505 |
container_title | Acta biomaterialia |
container_volume | 7 |
creator | Jeong, Claire G. Zhang, Huina Hollister, Scott J. |
description | The objective of this study was to evaluate the coupled effects of three-dimensional poly(1,8-octanediol–co-citrate) (POC) scaffold pore shape and permeability on chondrogenesis using primary chondrocytes in vivo. Chondrogenesis was characterized as cartilage matrix formation by sulfated glycosaminoglycan (sGAG) quantification, relative mRNA expression of the cartilage-related proteins collagen types I, II and X, aggrecan and matrix metalloproteinases 13 and 3 and the compressive mechanical properties of the tissue/scaffold construct. A low permeability design with a spherical pore shape showed a significantly greater increase in cartilage matrix formation over 6
weeks in vivo than a high permeability design with a cubical pore shape. This increase in cartilage matrix synthesis corresponded with increases in mechanical compressive nonlinear elastic properties and histological data demonstrating darker red Safranin-O staining. There was higher mRNA expression for both cartilage-specific proteins and matrix degradation proteins in the high permeability design, resulting in overall less sGAG retained in the high permeability scaffold compared with the low permeability scaffold. Controlled POC scaffolds with a spherical pore shape and low permeability correlated with significantly increased cartilage matrix production using primary seeded chondrocytes. These results indicate that the low permeability design with a spherical pore shape provided a better microenvironment for chondrogenesis than the high permeability design with a cubical pore shape. Thus, scaffold architecture and material design may have a significant impact on the success of matrix-based clinical cartilage repair strategies. |
doi_str_mv | 10.1016/j.actbio.2010.08.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918053487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706110003971</els_id><sourcerecordid>822362028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-5270a630e4704c3fa11792f8b79dd18c1a72db619079013fe2c702ab404f101e3</originalsourceid><addsrcrecordid>eNqFkUuO1DAQhiMEYh5wAwTeARJpyo4TO5uR0Gh4SCOxYGZtOU65263Ebuykpd5xB47AzTgJbqWHJaz8-vy7XF9RvKCwokCb99uVNlPnwopB3gK5AiYeFedUClmKupGP81xwVgpo6FlxkdIWoJKUyafFGQMJom7FefHrbhMRy96N6JMLXg9kF4bDG_pOlsFM2mPvwvD7x08TSuOmqCd8S5LR1oahz2hEkjZ6h0T7vMQ4ou7c4KYDQWvRTIkET9LclWY-hoU5EefJ3u0DMZvg-xjW6DG5RObk_Jrsoht1PDwcmsOE6VnxxOoh4fPTeFncf7y5u_5c3n799OX6w21pOBVTWTMBuqkAuQBuKqspFS2zshNt31NpqBas7xragmiBVhaZEcB0x4Hb3FGsLovXS-4uhu8zpkmNLhkchqVw1VIJdcWl-C8pGasaBkxmki-kiSGliFadfqgoqKNHtVWLR3X0qECq7DFfe3l6YO5G7P9eehCXgVcLYHVQeh1dUvffckINOUVIzjNxtRCYW7Z3GFUyDr3JQmMWo_rg_l3DH3PVvXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822362028</pqid></control><display><type>article</type><title>Three-dimensional poly(1,8-octanediol–co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jeong, Claire G. ; Zhang, Huina ; Hollister, Scott J.</creator><creatorcontrib>Jeong, Claire G. ; Zhang, Huina ; Hollister, Scott J.</creatorcontrib><description>The objective of this study was to evaluate the coupled effects of three-dimensional poly(1,8-octanediol–co-citrate) (POC) scaffold pore shape and permeability on chondrogenesis using primary chondrocytes in vivo. Chondrogenesis was characterized as cartilage matrix formation by sulfated glycosaminoglycan (sGAG) quantification, relative mRNA expression of the cartilage-related proteins collagen types I, II and X, aggrecan and matrix metalloproteinases 13 and 3 and the compressive mechanical properties of the tissue/scaffold construct. A low permeability design with a spherical pore shape showed a significantly greater increase in cartilage matrix formation over 6
weeks in vivo than a high permeability design with a cubical pore shape. This increase in cartilage matrix synthesis corresponded with increases in mechanical compressive nonlinear elastic properties and histological data demonstrating darker red Safranin-O staining. There was higher mRNA expression for both cartilage-specific proteins and matrix degradation proteins in the high permeability design, resulting in overall less sGAG retained in the high permeability scaffold compared with the low permeability scaffold. Controlled POC scaffolds with a spherical pore shape and low permeability correlated with significantly increased cartilage matrix production using primary seeded chondrocytes. These results indicate that the low permeability design with a spherical pore shape provided a better microenvironment for chondrogenesis than the high permeability design with a cubical pore shape. Thus, scaffold architecture and material design may have a significant impact on the success of matrix-based clinical cartilage repair strategies.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2010.08.027</identifier><identifier>PMID: 20807597</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Cartilage ; Cells, Cultured ; chondrocytes ; Chondrocytes - cytology ; Chondrocytes - drug effects ; Chondrocytes - metabolism ; chondrogenesis ; Chondrogenesis - drug effects ; Citrates - pharmacology ; collagen ; DNA - metabolism ; Elastic Modulus - drug effects ; Extracellular Matrix - drug effects ; Extracellular Matrix - metabolism ; gene expression ; Gene Expression Regulation - drug effects ; Glycosaminoglycans - metabolism ; Materials Testing ; Mechanical properties ; messenger RNA ; metalloproteinases ; Mice ; Nonlinear Dynamics ; Permeability ; Permeability - drug effects ; Poly(1,8-octanediol–co-citrate) scaffold ; Polymers - pharmacology ; Pore shape ; Porosity - drug effects ; Prosthesis Implantation ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Stress, Mechanical ; Subcutaneous Tissue - drug effects ; Sus scrofa ; Tissue Scaffolds - chemistry</subject><ispartof>Acta biomaterialia, 2011-02, Vol.7 (2), p.505-514</ispartof><rights>2010</rights><rights>Copyright © 2010. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-5270a630e4704c3fa11792f8b79dd18c1a72db619079013fe2c702ab404f101e3</citedby><cites>FETCH-LOGICAL-c417t-5270a630e4704c3fa11792f8b79dd18c1a72db619079013fe2c702ab404f101e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2010.08.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20807597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeong, Claire G.</creatorcontrib><creatorcontrib>Zhang, Huina</creatorcontrib><creatorcontrib>Hollister, Scott J.</creatorcontrib><title>Three-dimensional poly(1,8-octanediol–co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>The objective of this study was to evaluate the coupled effects of three-dimensional poly(1,8-octanediol–co-citrate) (POC) scaffold pore shape and permeability on chondrogenesis using primary chondrocytes in vivo. Chondrogenesis was characterized as cartilage matrix formation by sulfated glycosaminoglycan (sGAG) quantification, relative mRNA expression of the cartilage-related proteins collagen types I, II and X, aggrecan and matrix metalloproteinases 13 and 3 and the compressive mechanical properties of the tissue/scaffold construct. A low permeability design with a spherical pore shape showed a significantly greater increase in cartilage matrix formation over 6
weeks in vivo than a high permeability design with a cubical pore shape. This increase in cartilage matrix synthesis corresponded with increases in mechanical compressive nonlinear elastic properties and histological data demonstrating darker red Safranin-O staining. There was higher mRNA expression for both cartilage-specific proteins and matrix degradation proteins in the high permeability design, resulting in overall less sGAG retained in the high permeability scaffold compared with the low permeability scaffold. Controlled POC scaffolds with a spherical pore shape and low permeability correlated with significantly increased cartilage matrix production using primary seeded chondrocytes. These results indicate that the low permeability design with a spherical pore shape provided a better microenvironment for chondrogenesis than the high permeability design with a cubical pore shape. Thus, scaffold architecture and material design may have a significant impact on the success of matrix-based clinical cartilage repair strategies.</description><subject>Animals</subject><subject>Cartilage</subject><subject>Cells, Cultured</subject><subject>chondrocytes</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - drug effects</subject><subject>Chondrocytes - metabolism</subject><subject>chondrogenesis</subject><subject>Chondrogenesis - drug effects</subject><subject>Citrates - pharmacology</subject><subject>collagen</subject><subject>DNA - metabolism</subject><subject>Elastic Modulus - drug effects</subject><subject>Extracellular Matrix - drug effects</subject><subject>Extracellular Matrix - metabolism</subject><subject>gene expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Glycosaminoglycans - metabolism</subject><subject>Materials Testing</subject><subject>Mechanical properties</subject><subject>messenger RNA</subject><subject>metalloproteinases</subject><subject>Mice</subject><subject>Nonlinear Dynamics</subject><subject>Permeability</subject><subject>Permeability - drug effects</subject><subject>Poly(1,8-octanediol–co-citrate) scaffold</subject><subject>Polymers - pharmacology</subject><subject>Pore shape</subject><subject>Porosity - drug effects</subject><subject>Prosthesis Implantation</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Stress, Mechanical</subject><subject>Subcutaneous Tissue - drug effects</subject><subject>Sus scrofa</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuO1DAQhiMEYh5wAwTeARJpyo4TO5uR0Gh4SCOxYGZtOU65263Ebuykpd5xB47AzTgJbqWHJaz8-vy7XF9RvKCwokCb99uVNlPnwopB3gK5AiYeFedUClmKupGP81xwVgpo6FlxkdIWoJKUyafFGQMJom7FefHrbhMRy96N6JMLXg9kF4bDG_pOlsFM2mPvwvD7x08TSuOmqCd8S5LR1oahz2hEkjZ6h0T7vMQ4ou7c4KYDQWvRTIkET9LclWY-hoU5EefJ3u0DMZvg-xjW6DG5RObk_Jrsoht1PDwcmsOE6VnxxOoh4fPTeFncf7y5u_5c3n799OX6w21pOBVTWTMBuqkAuQBuKqspFS2zshNt31NpqBas7xragmiBVhaZEcB0x4Hb3FGsLovXS-4uhu8zpkmNLhkchqVw1VIJdcWl-C8pGasaBkxmki-kiSGliFadfqgoqKNHtVWLR3X0qECq7DFfe3l6YO5G7P9eehCXgVcLYHVQeh1dUvffckINOUVIzjNxtRCYW7Z3GFUyDr3JQmMWo_rg_l3DH3PVvXA</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Jeong, Claire G.</creator><creator>Zhang, Huina</creator><creator>Hollister, Scott J.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110201</creationdate><title>Three-dimensional poly(1,8-octanediol–co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes</title><author>Jeong, Claire G. ; Zhang, Huina ; Hollister, Scott J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-5270a630e4704c3fa11792f8b79dd18c1a72db619079013fe2c702ab404f101e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Cartilage</topic><topic>Cells, Cultured</topic><topic>chondrocytes</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - drug effects</topic><topic>Chondrocytes - metabolism</topic><topic>chondrogenesis</topic><topic>Chondrogenesis - drug effects</topic><topic>Citrates - pharmacology</topic><topic>collagen</topic><topic>DNA - metabolism</topic><topic>Elastic Modulus - drug effects</topic><topic>Extracellular Matrix - drug effects</topic><topic>Extracellular Matrix - metabolism</topic><topic>gene expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Glycosaminoglycans - metabolism</topic><topic>Materials Testing</topic><topic>Mechanical properties</topic><topic>messenger RNA</topic><topic>metalloproteinases</topic><topic>Mice</topic><topic>Nonlinear Dynamics</topic><topic>Permeability</topic><topic>Permeability - drug effects</topic><topic>Poly(1,8-octanediol–co-citrate) scaffold</topic><topic>Polymers - pharmacology</topic><topic>Pore shape</topic><topic>Porosity - drug effects</topic><topic>Prosthesis Implantation</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Stress, Mechanical</topic><topic>Subcutaneous Tissue - drug effects</topic><topic>Sus scrofa</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Claire G.</creatorcontrib><creatorcontrib>Zhang, Huina</creatorcontrib><creatorcontrib>Hollister, Scott J.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Claire G.</au><au>Zhang, Huina</au><au>Hollister, Scott J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional poly(1,8-octanediol–co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>7</volume><issue>2</issue><spage>505</spage><epage>514</epage><pages>505-514</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>The objective of this study was to evaluate the coupled effects of three-dimensional poly(1,8-octanediol–co-citrate) (POC) scaffold pore shape and permeability on chondrogenesis using primary chondrocytes in vivo. Chondrogenesis was characterized as cartilage matrix formation by sulfated glycosaminoglycan (sGAG) quantification, relative mRNA expression of the cartilage-related proteins collagen types I, II and X, aggrecan and matrix metalloproteinases 13 and 3 and the compressive mechanical properties of the tissue/scaffold construct. A low permeability design with a spherical pore shape showed a significantly greater increase in cartilage matrix formation over 6
weeks in vivo than a high permeability design with a cubical pore shape. This increase in cartilage matrix synthesis corresponded with increases in mechanical compressive nonlinear elastic properties and histological data demonstrating darker red Safranin-O staining. There was higher mRNA expression for both cartilage-specific proteins and matrix degradation proteins in the high permeability design, resulting in overall less sGAG retained in the high permeability scaffold compared with the low permeability scaffold. Controlled POC scaffolds with a spherical pore shape and low permeability correlated with significantly increased cartilage matrix production using primary seeded chondrocytes. These results indicate that the low permeability design with a spherical pore shape provided a better microenvironment for chondrogenesis than the high permeability design with a cubical pore shape. Thus, scaffold architecture and material design may have a significant impact on the success of matrix-based clinical cartilage repair strategies.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>20807597</pmid><doi>10.1016/j.actbio.2010.08.027</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2011-02, Vol.7 (2), p.505-514 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_918053487 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Cartilage Cells, Cultured chondrocytes Chondrocytes - cytology Chondrocytes - drug effects Chondrocytes - metabolism chondrogenesis Chondrogenesis - drug effects Citrates - pharmacology collagen DNA - metabolism Elastic Modulus - drug effects Extracellular Matrix - drug effects Extracellular Matrix - metabolism gene expression Gene Expression Regulation - drug effects Glycosaminoglycans - metabolism Materials Testing Mechanical properties messenger RNA metalloproteinases Mice Nonlinear Dynamics Permeability Permeability - drug effects Poly(1,8-octanediol–co-citrate) scaffold Polymers - pharmacology Pore shape Porosity - drug effects Prosthesis Implantation RNA, Messenger - genetics RNA, Messenger - metabolism Stress, Mechanical Subcutaneous Tissue - drug effects Sus scrofa Tissue Scaffolds - chemistry |
title | Three-dimensional poly(1,8-octanediol–co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20poly(1,8-octanediol%E2%80%93co-citrate)%20scaffold%20pore%20shape%20and%20permeability%20effects%20on%20sub-cutaneous%20in%20vivo%20chondrogenesis%20using%20primary%20chondrocytes&rft.jtitle=Acta%20biomaterialia&rft.au=Jeong,%20Claire%20G.&rft.date=2011-02-01&rft.volume=7&rft.issue=2&rft.spage=505&rft.epage=514&rft.pages=505-514&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2010.08.027&rft_dat=%3Cproquest_cross%3E822362028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=822362028&rft_id=info:pmid/20807597&rft_els_id=S1742706110003971&rfr_iscdi=true |