Three-dimensional poly(1,8-octanediol–co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes

The objective of this study was to evaluate the coupled effects of three-dimensional poly(1,8-octanediol–co-citrate) (POC) scaffold pore shape and permeability on chondrogenesis using primary chondrocytes in vivo. Chondrogenesis was characterized as cartilage matrix formation by sulfated glycosamino...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2011-02, Vol.7 (2), p.505-514
Hauptverfasser: Jeong, Claire G., Zhang, Huina, Hollister, Scott J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 514
container_issue 2
container_start_page 505
container_title Acta biomaterialia
container_volume 7
creator Jeong, Claire G.
Zhang, Huina
Hollister, Scott J.
description The objective of this study was to evaluate the coupled effects of three-dimensional poly(1,8-octanediol–co-citrate) (POC) scaffold pore shape and permeability on chondrogenesis using primary chondrocytes in vivo. Chondrogenesis was characterized as cartilage matrix formation by sulfated glycosaminoglycan (sGAG) quantification, relative mRNA expression of the cartilage-related proteins collagen types I, II and X, aggrecan and matrix metalloproteinases 13 and 3 and the compressive mechanical properties of the tissue/scaffold construct. A low permeability design with a spherical pore shape showed a significantly greater increase in cartilage matrix formation over 6 weeks in vivo than a high permeability design with a cubical pore shape. This increase in cartilage matrix synthesis corresponded with increases in mechanical compressive nonlinear elastic properties and histological data demonstrating darker red Safranin-O staining. There was higher mRNA expression for both cartilage-specific proteins and matrix degradation proteins in the high permeability design, resulting in overall less sGAG retained in the high permeability scaffold compared with the low permeability scaffold. Controlled POC scaffolds with a spherical pore shape and low permeability correlated with significantly increased cartilage matrix production using primary seeded chondrocytes. These results indicate that the low permeability design with a spherical pore shape provided a better microenvironment for chondrogenesis than the high permeability design with a cubical pore shape. Thus, scaffold architecture and material design may have a significant impact on the success of matrix-based clinical cartilage repair strategies.
doi_str_mv 10.1016/j.actbio.2010.08.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918053487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706110003971</els_id><sourcerecordid>822362028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-5270a630e4704c3fa11792f8b79dd18c1a72db619079013fe2c702ab404f101e3</originalsourceid><addsrcrecordid>eNqFkUuO1DAQhiMEYh5wAwTeARJpyo4TO5uR0Gh4SCOxYGZtOU65263Ebuykpd5xB47AzTgJbqWHJaz8-vy7XF9RvKCwokCb99uVNlPnwopB3gK5AiYeFedUClmKupGP81xwVgpo6FlxkdIWoJKUyafFGQMJom7FefHrbhMRy96N6JMLXg9kF4bDG_pOlsFM2mPvwvD7x08TSuOmqCd8S5LR1oahz2hEkjZ6h0T7vMQ4ou7c4KYDQWvRTIkET9LclWY-hoU5EefJ3u0DMZvg-xjW6DG5RObk_Jrsoht1PDwcmsOE6VnxxOoh4fPTeFncf7y5u_5c3n799OX6w21pOBVTWTMBuqkAuQBuKqspFS2zshNt31NpqBas7xragmiBVhaZEcB0x4Hb3FGsLovXS-4uhu8zpkmNLhkchqVw1VIJdcWl-C8pGasaBkxmki-kiSGliFadfqgoqKNHtVWLR3X0qECq7DFfe3l6YO5G7P9eehCXgVcLYHVQeh1dUvffckINOUVIzjNxtRCYW7Z3GFUyDr3JQmMWo_rg_l3DH3PVvXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822362028</pqid></control><display><type>article</type><title>Three-dimensional poly(1,8-octanediol–co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jeong, Claire G. ; Zhang, Huina ; Hollister, Scott J.</creator><creatorcontrib>Jeong, Claire G. ; Zhang, Huina ; Hollister, Scott J.</creatorcontrib><description>The objective of this study was to evaluate the coupled effects of three-dimensional poly(1,8-octanediol–co-citrate) (POC) scaffold pore shape and permeability on chondrogenesis using primary chondrocytes in vivo. Chondrogenesis was characterized as cartilage matrix formation by sulfated glycosaminoglycan (sGAG) quantification, relative mRNA expression of the cartilage-related proteins collagen types I, II and X, aggrecan and matrix metalloproteinases 13 and 3 and the compressive mechanical properties of the tissue/scaffold construct. A low permeability design with a spherical pore shape showed a significantly greater increase in cartilage matrix formation over 6 weeks in vivo than a high permeability design with a cubical pore shape. This increase in cartilage matrix synthesis corresponded with increases in mechanical compressive nonlinear elastic properties and histological data demonstrating darker red Safranin-O staining. There was higher mRNA expression for both cartilage-specific proteins and matrix degradation proteins in the high permeability design, resulting in overall less sGAG retained in the high permeability scaffold compared with the low permeability scaffold. Controlled POC scaffolds with a spherical pore shape and low permeability correlated with significantly increased cartilage matrix production using primary seeded chondrocytes. These results indicate that the low permeability design with a spherical pore shape provided a better microenvironment for chondrogenesis than the high permeability design with a cubical pore shape. Thus, scaffold architecture and material design may have a significant impact on the success of matrix-based clinical cartilage repair strategies.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2010.08.027</identifier><identifier>PMID: 20807597</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Cartilage ; Cells, Cultured ; chondrocytes ; Chondrocytes - cytology ; Chondrocytes - drug effects ; Chondrocytes - metabolism ; chondrogenesis ; Chondrogenesis - drug effects ; Citrates - pharmacology ; collagen ; DNA - metabolism ; Elastic Modulus - drug effects ; Extracellular Matrix - drug effects ; Extracellular Matrix - metabolism ; gene expression ; Gene Expression Regulation - drug effects ; Glycosaminoglycans - metabolism ; Materials Testing ; Mechanical properties ; messenger RNA ; metalloproteinases ; Mice ; Nonlinear Dynamics ; Permeability ; Permeability - drug effects ; Poly(1,8-octanediol–co-citrate) scaffold ; Polymers - pharmacology ; Pore shape ; Porosity - drug effects ; Prosthesis Implantation ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Stress, Mechanical ; Subcutaneous Tissue - drug effects ; Sus scrofa ; Tissue Scaffolds - chemistry</subject><ispartof>Acta biomaterialia, 2011-02, Vol.7 (2), p.505-514</ispartof><rights>2010</rights><rights>Copyright © 2010. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-5270a630e4704c3fa11792f8b79dd18c1a72db619079013fe2c702ab404f101e3</citedby><cites>FETCH-LOGICAL-c417t-5270a630e4704c3fa11792f8b79dd18c1a72db619079013fe2c702ab404f101e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2010.08.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20807597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeong, Claire G.</creatorcontrib><creatorcontrib>Zhang, Huina</creatorcontrib><creatorcontrib>Hollister, Scott J.</creatorcontrib><title>Three-dimensional poly(1,8-octanediol–co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>The objective of this study was to evaluate the coupled effects of three-dimensional poly(1,8-octanediol–co-citrate) (POC) scaffold pore shape and permeability on chondrogenesis using primary chondrocytes in vivo. Chondrogenesis was characterized as cartilage matrix formation by sulfated glycosaminoglycan (sGAG) quantification, relative mRNA expression of the cartilage-related proteins collagen types I, II and X, aggrecan and matrix metalloproteinases 13 and 3 and the compressive mechanical properties of the tissue/scaffold construct. A low permeability design with a spherical pore shape showed a significantly greater increase in cartilage matrix formation over 6 weeks in vivo than a high permeability design with a cubical pore shape. This increase in cartilage matrix synthesis corresponded with increases in mechanical compressive nonlinear elastic properties and histological data demonstrating darker red Safranin-O staining. There was higher mRNA expression for both cartilage-specific proteins and matrix degradation proteins in the high permeability design, resulting in overall less sGAG retained in the high permeability scaffold compared with the low permeability scaffold. Controlled POC scaffolds with a spherical pore shape and low permeability correlated with significantly increased cartilage matrix production using primary seeded chondrocytes. These results indicate that the low permeability design with a spherical pore shape provided a better microenvironment for chondrogenesis than the high permeability design with a cubical pore shape. Thus, scaffold architecture and material design may have a significant impact on the success of matrix-based clinical cartilage repair strategies.</description><subject>Animals</subject><subject>Cartilage</subject><subject>Cells, Cultured</subject><subject>chondrocytes</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - drug effects</subject><subject>Chondrocytes - metabolism</subject><subject>chondrogenesis</subject><subject>Chondrogenesis - drug effects</subject><subject>Citrates - pharmacology</subject><subject>collagen</subject><subject>DNA - metabolism</subject><subject>Elastic Modulus - drug effects</subject><subject>Extracellular Matrix - drug effects</subject><subject>Extracellular Matrix - metabolism</subject><subject>gene expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Glycosaminoglycans - metabolism</subject><subject>Materials Testing</subject><subject>Mechanical properties</subject><subject>messenger RNA</subject><subject>metalloproteinases</subject><subject>Mice</subject><subject>Nonlinear Dynamics</subject><subject>Permeability</subject><subject>Permeability - drug effects</subject><subject>Poly(1,8-octanediol–co-citrate) scaffold</subject><subject>Polymers - pharmacology</subject><subject>Pore shape</subject><subject>Porosity - drug effects</subject><subject>Prosthesis Implantation</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Stress, Mechanical</subject><subject>Subcutaneous Tissue - drug effects</subject><subject>Sus scrofa</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuO1DAQhiMEYh5wAwTeARJpyo4TO5uR0Gh4SCOxYGZtOU65263Ebuykpd5xB47AzTgJbqWHJaz8-vy7XF9RvKCwokCb99uVNlPnwopB3gK5AiYeFedUClmKupGP81xwVgpo6FlxkdIWoJKUyafFGQMJom7FefHrbhMRy96N6JMLXg9kF4bDG_pOlsFM2mPvwvD7x08TSuOmqCd8S5LR1oahz2hEkjZ6h0T7vMQ4ou7c4KYDQWvRTIkET9LclWY-hoU5EefJ3u0DMZvg-xjW6DG5RObk_Jrsoht1PDwcmsOE6VnxxOoh4fPTeFncf7y5u_5c3n799OX6w21pOBVTWTMBuqkAuQBuKqspFS2zshNt31NpqBas7xragmiBVhaZEcB0x4Hb3FGsLovXS-4uhu8zpkmNLhkchqVw1VIJdcWl-C8pGasaBkxmki-kiSGliFadfqgoqKNHtVWLR3X0qECq7DFfe3l6YO5G7P9eehCXgVcLYHVQeh1dUvffckINOUVIzjNxtRCYW7Z3GFUyDr3JQmMWo_rg_l3DH3PVvXA</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Jeong, Claire G.</creator><creator>Zhang, Huina</creator><creator>Hollister, Scott J.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110201</creationdate><title>Three-dimensional poly(1,8-octanediol–co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes</title><author>Jeong, Claire G. ; Zhang, Huina ; Hollister, Scott J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-5270a630e4704c3fa11792f8b79dd18c1a72db619079013fe2c702ab404f101e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Cartilage</topic><topic>Cells, Cultured</topic><topic>chondrocytes</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - drug effects</topic><topic>Chondrocytes - metabolism</topic><topic>chondrogenesis</topic><topic>Chondrogenesis - drug effects</topic><topic>Citrates - pharmacology</topic><topic>collagen</topic><topic>DNA - metabolism</topic><topic>Elastic Modulus - drug effects</topic><topic>Extracellular Matrix - drug effects</topic><topic>Extracellular Matrix - metabolism</topic><topic>gene expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Glycosaminoglycans - metabolism</topic><topic>Materials Testing</topic><topic>Mechanical properties</topic><topic>messenger RNA</topic><topic>metalloproteinases</topic><topic>Mice</topic><topic>Nonlinear Dynamics</topic><topic>Permeability</topic><topic>Permeability - drug effects</topic><topic>Poly(1,8-octanediol–co-citrate) scaffold</topic><topic>Polymers - pharmacology</topic><topic>Pore shape</topic><topic>Porosity - drug effects</topic><topic>Prosthesis Implantation</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Stress, Mechanical</topic><topic>Subcutaneous Tissue - drug effects</topic><topic>Sus scrofa</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Claire G.</creatorcontrib><creatorcontrib>Zhang, Huina</creatorcontrib><creatorcontrib>Hollister, Scott J.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Claire G.</au><au>Zhang, Huina</au><au>Hollister, Scott J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional poly(1,8-octanediol–co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>7</volume><issue>2</issue><spage>505</spage><epage>514</epage><pages>505-514</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>The objective of this study was to evaluate the coupled effects of three-dimensional poly(1,8-octanediol–co-citrate) (POC) scaffold pore shape and permeability on chondrogenesis using primary chondrocytes in vivo. Chondrogenesis was characterized as cartilage matrix formation by sulfated glycosaminoglycan (sGAG) quantification, relative mRNA expression of the cartilage-related proteins collagen types I, II and X, aggrecan and matrix metalloproteinases 13 and 3 and the compressive mechanical properties of the tissue/scaffold construct. A low permeability design with a spherical pore shape showed a significantly greater increase in cartilage matrix formation over 6 weeks in vivo than a high permeability design with a cubical pore shape. This increase in cartilage matrix synthesis corresponded with increases in mechanical compressive nonlinear elastic properties and histological data demonstrating darker red Safranin-O staining. There was higher mRNA expression for both cartilage-specific proteins and matrix degradation proteins in the high permeability design, resulting in overall less sGAG retained in the high permeability scaffold compared with the low permeability scaffold. Controlled POC scaffolds with a spherical pore shape and low permeability correlated with significantly increased cartilage matrix production using primary seeded chondrocytes. These results indicate that the low permeability design with a spherical pore shape provided a better microenvironment for chondrogenesis than the high permeability design with a cubical pore shape. Thus, scaffold architecture and material design may have a significant impact on the success of matrix-based clinical cartilage repair strategies.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>20807597</pmid><doi>10.1016/j.actbio.2010.08.027</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2011-02, Vol.7 (2), p.505-514
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_918053487
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animals
Cartilage
Cells, Cultured
chondrocytes
Chondrocytes - cytology
Chondrocytes - drug effects
Chondrocytes - metabolism
chondrogenesis
Chondrogenesis - drug effects
Citrates - pharmacology
collagen
DNA - metabolism
Elastic Modulus - drug effects
Extracellular Matrix - drug effects
Extracellular Matrix - metabolism
gene expression
Gene Expression Regulation - drug effects
Glycosaminoglycans - metabolism
Materials Testing
Mechanical properties
messenger RNA
metalloproteinases
Mice
Nonlinear Dynamics
Permeability
Permeability - drug effects
Poly(1,8-octanediol–co-citrate) scaffold
Polymers - pharmacology
Pore shape
Porosity - drug effects
Prosthesis Implantation
RNA, Messenger - genetics
RNA, Messenger - metabolism
Stress, Mechanical
Subcutaneous Tissue - drug effects
Sus scrofa
Tissue Scaffolds - chemistry
title Three-dimensional poly(1,8-octanediol–co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20poly(1,8-octanediol%E2%80%93co-citrate)%20scaffold%20pore%20shape%20and%20permeability%20effects%20on%20sub-cutaneous%20in%20vivo%20chondrogenesis%20using%20primary%20chondrocytes&rft.jtitle=Acta%20biomaterialia&rft.au=Jeong,%20Claire%20G.&rft.date=2011-02-01&rft.volume=7&rft.issue=2&rft.spage=505&rft.epage=514&rft.pages=505-514&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2010.08.027&rft_dat=%3Cproquest_cross%3E822362028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=822362028&rft_id=info:pmid/20807597&rft_els_id=S1742706110003971&rfr_iscdi=true