Mitigation of the irreversible capacity and electrolyte decomposition in a LiNi sub(0.5Mn) sub(1).5O sub(4/nano-TiO) sub(2) Li-ion battery

Nanosized titanium oxides can achieve large reversible specific capacity (above 200 mAh g super(-1) and good rate capabilities, but suffer irreversible capacity losses in the first cycle. Moreover, due to the intrinsic safe operating potential (1.5 V), the use of titanium oxide requires to couple it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2011-11, Vol.196 (22), p.9792-9799
Hauptverfasser: Brutti, Sergio, Gentili, Valentina, Reale, Priscilla, Carbone, Lorenzo, Panero, Stefania
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9799
container_issue 22
container_start_page 9792
container_title Journal of power sources
container_volume 196
creator Brutti, Sergio
Gentili, Valentina
Reale, Priscilla
Carbone, Lorenzo
Panero, Stefania
description Nanosized titanium oxides can achieve large reversible specific capacity (above 200 mAh g super(-1) and good rate capabilities, but suffer irreversible capacity losses in the first cycle. Moreover, due to the intrinsic safe operating potential (1.5 V), the use of titanium oxide requires to couple it with high-potential cathodes, such as lithium nickel manganese spinel (LNMO) in order to increase the energy density of the final cell. However the use of the 4.7 V vs. Li) super(+)/Li super(0 LNMO cathode material requires to tackle the continuous electrolyte decomposition upon cycling. Coupling these two electrodes to make a lithium ion battery is thus highly appealing but also highly difficult because the cell balancing must account not only for the charge reversibly exchanged by each electrode but also for the irreversible charge losses. In this paper a LNMO-nano TiO) sub(2) Li-ion cell with liquid electrolyte is presented: two innovative approaches on both the cathode and the anode sides were developed in order to mitigate the electrolyte decomposition upon cycling. In particular the LNMO surface was coated with ZnO in order to minimize the surface reactivity, and the TiO sub(2 nanoparticles where activated by incorporating nano-lithium in the electrode formulation to compensate for the irreversible capacity loss in the first cycle. With these strategies we were able to assemble balanced Li-ion coin cells thus avoiding the use of electrolyte additives and more hazardous and expensive ex-situ SEI preforming chemical or electrochemical procedures.)
doi_str_mv 10.1016/j.jpowsour.2011.08.022
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_918053327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1777125139</sourcerecordid><originalsourceid>FETCH-LOGICAL-p657-351e6a7fe75ced60f286da8735035961994707ed1013fe75fcc76f7c741654b93</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhT2ARCm8AvJGOyS149g3GVHFn9SSpXvlODfgKo1D7ID6Cjw1acvMdI90vu8Ml5A7zmLOuFrs4l3nvr0b-jhhnMcsi1mSXJAJE5BFAFJckWvvd4yNLbAJ-VnbYN91sK6lrqbhA6nte_zC3tuyQWp0p40NB6rbimKDJvSuOQSkFRq375y3J9W2VNOVfbPUD-WMxXLdzk-Rz2NZnFK6aHXroo0tzk0yH4XoKJc6BOwPN-Sy1o3H2787JZunx83yJVoVz6_Lh1XUKQmRkByVhhpBGqwUq5NMVToDIZmQueJ5ngIDrMZ3iCNUGwOqBgMpVzItczEl9-fZrnefA_qw3VtvsGl0i27w25xnTAqRwEjO_iU5APBEcpGLXwOZcvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777125139</pqid></control><display><type>article</type><title>Mitigation of the irreversible capacity and electrolyte decomposition in a LiNi sub(0.5Mn) sub(1).5O sub(4/nano-TiO) sub(2) Li-ion battery</title><source>Elsevier ScienceDirect Journals</source><creator>Brutti, Sergio ; Gentili, Valentina ; Reale, Priscilla ; Carbone, Lorenzo ; Panero, Stefania</creator><creatorcontrib>Brutti, Sergio ; Gentili, Valentina ; Reale, Priscilla ; Carbone, Lorenzo ; Panero, Stefania</creatorcontrib><description>Nanosized titanium oxides can achieve large reversible specific capacity (above 200 mAh g super(-1) and good rate capabilities, but suffer irreversible capacity losses in the first cycle. Moreover, due to the intrinsic safe operating potential (1.5 V), the use of titanium oxide requires to couple it with high-potential cathodes, such as lithium nickel manganese spinel (LNMO) in order to increase the energy density of the final cell. However the use of the 4.7 V vs. Li) super(+)/Li super(0 LNMO cathode material requires to tackle the continuous electrolyte decomposition upon cycling. Coupling these two electrodes to make a lithium ion battery is thus highly appealing but also highly difficult because the cell balancing must account not only for the charge reversibly exchanged by each electrode but also for the irreversible charge losses. In this paper a LNMO-nano TiO) sub(2) Li-ion cell with liquid electrolyte is presented: two innovative approaches on both the cathode and the anode sides were developed in order to mitigate the electrolyte decomposition upon cycling. In particular the LNMO surface was coated with ZnO in order to minimize the surface reactivity, and the TiO sub(2 nanoparticles where activated by incorporating nano-lithium in the electrode formulation to compensate for the irreversible capacity loss in the first cycle. With these strategies we were able to assemble balanced Li-ion coin cells thus avoiding the use of electrolyte additives and more hazardous and expensive ex-situ SEI preforming chemical or electrochemical procedures.)</description><identifier>ISSN: 0378-7753</identifier><identifier>DOI: 10.1016/j.jpowsour.2011.08.022</identifier><language>eng</language><subject>Cathodes ; Decomposition ; Electrolytes ; Electrolytic cells ; Nanocomposites ; Nanomaterials ; Nanostructure ; Titanium dioxide</subject><ispartof>Journal of power sources, 2011-11, Vol.196 (22), p.9792-9799</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Brutti, Sergio</creatorcontrib><creatorcontrib>Gentili, Valentina</creatorcontrib><creatorcontrib>Reale, Priscilla</creatorcontrib><creatorcontrib>Carbone, Lorenzo</creatorcontrib><creatorcontrib>Panero, Stefania</creatorcontrib><title>Mitigation of the irreversible capacity and electrolyte decomposition in a LiNi sub(0.5Mn) sub(1).5O sub(4/nano-TiO) sub(2) Li-ion battery</title><title>Journal of power sources</title><description>Nanosized titanium oxides can achieve large reversible specific capacity (above 200 mAh g super(-1) and good rate capabilities, but suffer irreversible capacity losses in the first cycle. Moreover, due to the intrinsic safe operating potential (1.5 V), the use of titanium oxide requires to couple it with high-potential cathodes, such as lithium nickel manganese spinel (LNMO) in order to increase the energy density of the final cell. However the use of the 4.7 V vs. Li) super(+)/Li super(0 LNMO cathode material requires to tackle the continuous electrolyte decomposition upon cycling. Coupling these two electrodes to make a lithium ion battery is thus highly appealing but also highly difficult because the cell balancing must account not only for the charge reversibly exchanged by each electrode but also for the irreversible charge losses. In this paper a LNMO-nano TiO) sub(2) Li-ion cell with liquid electrolyte is presented: two innovative approaches on both the cathode and the anode sides were developed in order to mitigate the electrolyte decomposition upon cycling. In particular the LNMO surface was coated with ZnO in order to minimize the surface reactivity, and the TiO sub(2 nanoparticles where activated by incorporating nano-lithium in the electrode formulation to compensate for the irreversible capacity loss in the first cycle. With these strategies we were able to assemble balanced Li-ion coin cells thus avoiding the use of electrolyte additives and more hazardous and expensive ex-situ SEI preforming chemical or electrochemical procedures.)</description><subject>Cathodes</subject><subject>Decomposition</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Titanium dioxide</subject><issn>0378-7753</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhT2ARCm8AvJGOyS149g3GVHFn9SSpXvlODfgKo1D7ID6Cjw1acvMdI90vu8Ml5A7zmLOuFrs4l3nvr0b-jhhnMcsi1mSXJAJE5BFAFJckWvvd4yNLbAJ-VnbYN91sK6lrqbhA6nte_zC3tuyQWp0p40NB6rbimKDJvSuOQSkFRq375y3J9W2VNOVfbPUD-WMxXLdzk-Rz2NZnFK6aHXroo0tzk0yH4XoKJc6BOwPN-Sy1o3H2787JZunx83yJVoVz6_Lh1XUKQmRkByVhhpBGqwUq5NMVToDIZmQueJ5ngIDrMZ3iCNUGwOqBgMpVzItczEl9-fZrnefA_qw3VtvsGl0i27w25xnTAqRwEjO_iU5APBEcpGLXwOZcvU</recordid><startdate>20111115</startdate><enddate>20111115</enddate><creator>Brutti, Sergio</creator><creator>Gentili, Valentina</creator><creator>Reale, Priscilla</creator><creator>Carbone, Lorenzo</creator><creator>Panero, Stefania</creator><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20111115</creationdate><title>Mitigation of the irreversible capacity and electrolyte decomposition in a LiNi sub(0.5Mn) sub(1).5O sub(4/nano-TiO) sub(2) Li-ion battery</title><author>Brutti, Sergio ; Gentili, Valentina ; Reale, Priscilla ; Carbone, Lorenzo ; Panero, Stefania</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p657-351e6a7fe75ced60f286da8735035961994707ed1013fe75fcc76f7c741654b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cathodes</topic><topic>Decomposition</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brutti, Sergio</creatorcontrib><creatorcontrib>Gentili, Valentina</creatorcontrib><creatorcontrib>Reale, Priscilla</creatorcontrib><creatorcontrib>Carbone, Lorenzo</creatorcontrib><creatorcontrib>Panero, Stefania</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brutti, Sergio</au><au>Gentili, Valentina</au><au>Reale, Priscilla</au><au>Carbone, Lorenzo</au><au>Panero, Stefania</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitigation of the irreversible capacity and electrolyte decomposition in a LiNi sub(0.5Mn) sub(1).5O sub(4/nano-TiO) sub(2) Li-ion battery</atitle><jtitle>Journal of power sources</jtitle><date>2011-11-15</date><risdate>2011</risdate><volume>196</volume><issue>22</issue><spage>9792</spage><epage>9799</epage><pages>9792-9799</pages><issn>0378-7753</issn><abstract>Nanosized titanium oxides can achieve large reversible specific capacity (above 200 mAh g super(-1) and good rate capabilities, but suffer irreversible capacity losses in the first cycle. Moreover, due to the intrinsic safe operating potential (1.5 V), the use of titanium oxide requires to couple it with high-potential cathodes, such as lithium nickel manganese spinel (LNMO) in order to increase the energy density of the final cell. However the use of the 4.7 V vs. Li) super(+)/Li super(0 LNMO cathode material requires to tackle the continuous electrolyte decomposition upon cycling. Coupling these two electrodes to make a lithium ion battery is thus highly appealing but also highly difficult because the cell balancing must account not only for the charge reversibly exchanged by each electrode but also for the irreversible charge losses. In this paper a LNMO-nano TiO) sub(2) Li-ion cell with liquid electrolyte is presented: two innovative approaches on both the cathode and the anode sides were developed in order to mitigate the electrolyte decomposition upon cycling. In particular the LNMO surface was coated with ZnO in order to minimize the surface reactivity, and the TiO sub(2 nanoparticles where activated by incorporating nano-lithium in the electrode formulation to compensate for the irreversible capacity loss in the first cycle. With these strategies we were able to assemble balanced Li-ion coin cells thus avoiding the use of electrolyte additives and more hazardous and expensive ex-situ SEI preforming chemical or electrochemical procedures.)</abstract><doi>10.1016/j.jpowsour.2011.08.022</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2011-11, Vol.196 (22), p.9792-9799
issn 0378-7753
language eng
recordid cdi_proquest_miscellaneous_918053327
source Elsevier ScienceDirect Journals
subjects Cathodes
Decomposition
Electrolytes
Electrolytic cells
Nanocomposites
Nanomaterials
Nanostructure
Titanium dioxide
title Mitigation of the irreversible capacity and electrolyte decomposition in a LiNi sub(0.5Mn) sub(1).5O sub(4/nano-TiO) sub(2) Li-ion battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A08%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitigation%20of%20the%20irreversible%20capacity%20and%20electrolyte%20decomposition%20in%20a%20LiNi%20sub(0.5Mn)%20sub(1).5O%20sub(4/nano-TiO)%20sub(2)%20Li-ion%20battery&rft.jtitle=Journal%20of%20power%20sources&rft.au=Brutti,%20Sergio&rft.date=2011-11-15&rft.volume=196&rft.issue=22&rft.spage=9792&rft.epage=9799&rft.pages=9792-9799&rft.issn=0378-7753&rft_id=info:doi/10.1016/j.jpowsour.2011.08.022&rft_dat=%3Cproquest%3E1777125139%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777125139&rft_id=info:pmid/&rfr_iscdi=true