Chain architecture dependence of pore morphologies and water diffusion in grafted and block polymer electrolyte fuel cell membranes

Using dissipative particle dynamics we model phase separation within block and grafted polymers composed of hydrophobic (A) and hydrophilic, acid-containing (C) beads. The grafted polymers have their hydrophilic beads located at the end of the grafted side chains. Pore morphologies are calculated at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2010, Vol.3 (9), p.1326-1338
Hauptverfasser: Dorenbos, Gert, Morohoshi, Kei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1338
container_issue 9
container_start_page 1326
container_title Energy & environmental science
container_volume 3
creator Dorenbos, Gert
Morohoshi, Kei
description Using dissipative particle dynamics we model phase separation within block and grafted polymers composed of hydrophobic (A) and hydrophilic, acid-containing (C) beads. The grafted polymers have their hydrophilic beads located at the end of the grafted side chains. Pore morphologies are calculated at a hydration level λ of 4 H 2 O molecules/C bead. Monte Carlo tracer diffusion calculations are used to model the restricted movement of water within the pore networks. For the block polymers we find that at fixed C bead fractions, or ion exchange capacity (IEC), an increase in C block length results in larger pores and increased water diffusion. For grafted polymers of equal IEC, increasing the side chain length results in a better connected pore network and increased long-range water mobility. Prediction of the dependence of long-range water diffusion on polymer architecture for hydrated comb polymers with end grafted hydrophilic moieties.
doi_str_mv 10.1039/b924171j
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_918050251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>918050251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-a50e0690106d9bb4c24f3a3e1eae0ed821e2b818aac887b9b2c11be7cfbe7f2f3</originalsourceid><addsrcrecordid>eNp1kLtPwzAQxi0EEqUgsTPgDZaA7Tw9oqo8pEosMEd-nNsUJw52ItSZfxyXUsTCcq_vd59Oh9A5JTeUpPxWcpbRkq4P0ISWeZbkJSkO93XB2TE6CWFNSMFIySfoc7YSTYeFV6tmADWMHrCGHjoNnQLsDO5dHLXO9ytn3bKBgEWn8YcYwGPdGDOGxnU4eiy9MAPob1lap97iqt20EQMbnX1sBsBmBIsVWItbaKUXHYRTdGSEDXD2k6fo9X7-MntMFs8PT7O7RaLSgg-JyAmQghNKCs2lzBTLTCpSoCCAgK4YBSYrWgmhqqqUXDJFqYRSmRgMM-kUXe18e-_eRwhD3TZhe0o8wo2h5rQiOWE5jeT1jlTeheDB1L1vWuE3NSX19s31_s0RvdihPqhf6o96-b9a99qkX9Udhx0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918050251</pqid></control><display><type>article</type><title>Chain architecture dependence of pore morphologies and water diffusion in grafted and block polymer electrolyte fuel cell membranes</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Dorenbos, Gert ; Morohoshi, Kei</creator><creatorcontrib>Dorenbos, Gert ; Morohoshi, Kei</creatorcontrib><description>Using dissipative particle dynamics we model phase separation within block and grafted polymers composed of hydrophobic (A) and hydrophilic, acid-containing (C) beads. The grafted polymers have their hydrophilic beads located at the end of the grafted side chains. Pore morphologies are calculated at a hydration level λ of 4 H 2 O molecules/C bead. Monte Carlo tracer diffusion calculations are used to model the restricted movement of water within the pore networks. For the block polymers we find that at fixed C bead fractions, or ion exchange capacity (IEC), an increase in C block length results in larger pores and increased water diffusion. For grafted polymers of equal IEC, increasing the side chain length results in a better connected pore network and increased long-range water mobility. Prediction of the dependence of long-range water diffusion on polymer architecture for hydrated comb polymers with end grafted hydrophilic moieties.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/b924171j</identifier><language>eng</language><ispartof>Energy &amp; environmental science, 2010, Vol.3 (9), p.1326-1338</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-a50e0690106d9bb4c24f3a3e1eae0ed821e2b818aac887b9b2c11be7cfbe7f2f3</citedby><cites>FETCH-LOGICAL-c369t-a50e0690106d9bb4c24f3a3e1eae0ed821e2b818aac887b9b2c11be7cfbe7f2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Dorenbos, Gert</creatorcontrib><creatorcontrib>Morohoshi, Kei</creatorcontrib><title>Chain architecture dependence of pore morphologies and water diffusion in grafted and block polymer electrolyte fuel cell membranes</title><title>Energy &amp; environmental science</title><description>Using dissipative particle dynamics we model phase separation within block and grafted polymers composed of hydrophobic (A) and hydrophilic, acid-containing (C) beads. The grafted polymers have their hydrophilic beads located at the end of the grafted side chains. Pore morphologies are calculated at a hydration level λ of 4 H 2 O molecules/C bead. Monte Carlo tracer diffusion calculations are used to model the restricted movement of water within the pore networks. For the block polymers we find that at fixed C bead fractions, or ion exchange capacity (IEC), an increase in C block length results in larger pores and increased water diffusion. For grafted polymers of equal IEC, increasing the side chain length results in a better connected pore network and increased long-range water mobility. Prediction of the dependence of long-range water diffusion on polymer architecture for hydrated comb polymers with end grafted hydrophilic moieties.</description><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kLtPwzAQxi0EEqUgsTPgDZaA7Tw9oqo8pEosMEd-nNsUJw52ItSZfxyXUsTCcq_vd59Oh9A5JTeUpPxWcpbRkq4P0ISWeZbkJSkO93XB2TE6CWFNSMFIySfoc7YSTYeFV6tmADWMHrCGHjoNnQLsDO5dHLXO9ytn3bKBgEWn8YcYwGPdGDOGxnU4eiy9MAPob1lap97iqt20EQMbnX1sBsBmBIsVWItbaKUXHYRTdGSEDXD2k6fo9X7-MntMFs8PT7O7RaLSgg-JyAmQghNKCs2lzBTLTCpSoCCAgK4YBSYrWgmhqqqUXDJFqYRSmRgMM-kUXe18e-_eRwhD3TZhe0o8wo2h5rQiOWE5jeT1jlTeheDB1L1vWuE3NSX19s31_s0RvdihPqhf6o96-b9a99qkX9Udhx0</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Dorenbos, Gert</creator><creator>Morohoshi, Kei</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>2010</creationdate><title>Chain architecture dependence of pore morphologies and water diffusion in grafted and block polymer electrolyte fuel cell membranes</title><author>Dorenbos, Gert ; Morohoshi, Kei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-a50e0690106d9bb4c24f3a3e1eae0ed821e2b818aac887b9b2c11be7cfbe7f2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorenbos, Gert</creatorcontrib><creatorcontrib>Morohoshi, Kei</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorenbos, Gert</au><au>Morohoshi, Kei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chain architecture dependence of pore morphologies and water diffusion in grafted and block polymer electrolyte fuel cell membranes</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2010</date><risdate>2010</risdate><volume>3</volume><issue>9</issue><spage>1326</spage><epage>1338</epage><pages>1326-1338</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Using dissipative particle dynamics we model phase separation within block and grafted polymers composed of hydrophobic (A) and hydrophilic, acid-containing (C) beads. The grafted polymers have their hydrophilic beads located at the end of the grafted side chains. Pore morphologies are calculated at a hydration level λ of 4 H 2 O molecules/C bead. Monte Carlo tracer diffusion calculations are used to model the restricted movement of water within the pore networks. For the block polymers we find that at fixed C bead fractions, or ion exchange capacity (IEC), an increase in C block length results in larger pores and increased water diffusion. For grafted polymers of equal IEC, increasing the side chain length results in a better connected pore network and increased long-range water mobility. Prediction of the dependence of long-range water diffusion on polymer architecture for hydrated comb polymers with end grafted hydrophilic moieties.</abstract><doi>10.1039/b924171j</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2010, Vol.3 (9), p.1326-1338
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_miscellaneous_918050251
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Chain architecture dependence of pore morphologies and water diffusion in grafted and block polymer electrolyte fuel cell membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chain%20architecture%20dependence%20of%20pore%20morphologies%20and%20water%20diffusion%20in%20grafted%20and%20block%20polymer%20electrolyte%20fuel%20cell%20membranes&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Dorenbos,%20Gert&rft.date=2010&rft.volume=3&rft.issue=9&rft.spage=1326&rft.epage=1338&rft.pages=1326-1338&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/b924171j&rft_dat=%3Cproquest_rsc_p%3E918050251%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918050251&rft_id=info:pmid/&rfr_iscdi=true