Metabolic engineering and classic selection of the yeast Candida famata ( Candida flareri) for construction of strains with enhanced riboflavin production

Currently, the mutant of the flavinogenic yeast Candida famata dep8 isolated by classic mutagenesis and selection is used for industrial riboflavin production. Here we report on construction of a riboflavin overproducing strain of C. famata using a combination of random mutagenesis based on the sele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolic engineering 2011, Vol.13 (1), p.82-88
Hauptverfasser: Dmytruk, Kostyantyn V., Yatsyshyn, Valentyna Y., Sybirna, Natalia O., Fedorovych, Daria V., Sibirny, Andriy A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue 1
container_start_page 82
container_title Metabolic engineering
container_volume 13
creator Dmytruk, Kostyantyn V.
Yatsyshyn, Valentyna Y.
Sybirna, Natalia O.
Fedorovych, Daria V.
Sibirny, Andriy A.
description Currently, the mutant of the flavinogenic yeast Candida famata dep8 isolated by classic mutagenesis and selection is used for industrial riboflavin production. Here we report on construction of a riboflavin overproducing strain of C. famata using a combination of random mutagenesis based on the selection of mutants resistant to different antimetabolites as well as rational approaches of metabolic engineering. The conventional mutagenesis involved consecutive selection for resistance to riboflavin structural analog 7-methyl-8-trifluoromethyl-10-(1'-d-ribityl)isoalloxazine), 8-azaguanine, 6-azauracil, 2-diazo-5-oxo-L-norleucine and guanosine as well as screening for yellow colonies at high pH. The metabolic engineering approaches involved introduction of additional copies of transcription factor SEF1 and IMH3 (coding for IMP dehydrogenase) orthologs from Debaryomyces hansenii, and the homologous genes RIB1 and RIB7, encoding GTP cyclohydrolase II and riboflavin synthetase, the first and the last enzymes of riboflavin biosynthesis pathway, respectively. Overexpression of the aforementioned genes in riboflavin overproducer AF-4 obtained by classical selection resulted in a 4.1-fold increase in riboflavin production in shake-flask experiments. D. hansenii IMH3 and modified ARO4 genes conferring resistance to mycophenolic acid and fluorophenylalanine, respectively, were successfully used as new dominant selection markers for C. famata.
doi_str_mv 10.1016/j.ymben.2010.10.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918048336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717610000960</els_id><sourcerecordid>918048336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-e5498407272a524410a7f98022e1821762a768f0e6c876ae3843b8e98c8781be3</originalsourceid><addsrcrecordid>eNp9UctOwzAQtBCI9xcgId-AQ4vtpIlz4IAqXlIRFzhbG2dDXSU22G5Rf4WvxaVQbpzsHc3saHYIOeFsyBkvLmfDZV-jHQr2jQwZG22Rfc6qYlBymW9v_mWxRw5CmDHG-ajiu2RPcJazspL75PMRI9SuM5qifTUW0Rv7SsE2VHcQQsIDdqijcZa6lsYp0iVCiHScOKYB2kIPEej5H9CBT1suaOs81c6G6OcbfRrA2EA_TJwmxylYjQ31pnZJtjCWvnnXrOlHZKeFLuDxz3tIXm5vnsf3g8nT3cP4ejLQWcXiAEd5JVMaUQoYiTznDMq2kkwI5FKk8ALKQrYMCy3LAjCTeVZLrGQaJa8xOyRn673J-n2OIareBI1dBxbdPKiKS5bLLCsSM1sztXcheGzVmzc9-KXiTK06UTP13YladbICUydJdfqzf1732Gw0vyUkwtWagCnlwqBXQRtcHcb4dHnVOPOvwReayJ_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918048336</pqid></control><display><type>article</type><title>Metabolic engineering and classic selection of the yeast Candida famata ( Candida flareri) for construction of strains with enhanced riboflavin production</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Dmytruk, Kostyantyn V. ; Yatsyshyn, Valentyna Y. ; Sybirna, Natalia O. ; Fedorovych, Daria V. ; Sibirny, Andriy A.</creator><creatorcontrib>Dmytruk, Kostyantyn V. ; Yatsyshyn, Valentyna Y. ; Sybirna, Natalia O. ; Fedorovych, Daria V. ; Sibirny, Andriy A.</creatorcontrib><description>Currently, the mutant of the flavinogenic yeast Candida famata dep8 isolated by classic mutagenesis and selection is used for industrial riboflavin production. Here we report on construction of a riboflavin overproducing strain of C. famata using a combination of random mutagenesis based on the selection of mutants resistant to different antimetabolites as well as rational approaches of metabolic engineering. The conventional mutagenesis involved consecutive selection for resistance to riboflavin structural analog 7-methyl-8-trifluoromethyl-10-(1'-d-ribityl)isoalloxazine), 8-azaguanine, 6-azauracil, 2-diazo-5-oxo-L-norleucine and guanosine as well as screening for yellow colonies at high pH. The metabolic engineering approaches involved introduction of additional copies of transcription factor SEF1 and IMH3 (coding for IMP dehydrogenase) orthologs from Debaryomyces hansenii, and the homologous genes RIB1 and RIB7, encoding GTP cyclohydrolase II and riboflavin synthetase, the first and the last enzymes of riboflavin biosynthesis pathway, respectively. Overexpression of the aforementioned genes in riboflavin overproducer AF-4 obtained by classical selection resulted in a 4.1-fold increase in riboflavin production in shake-flask experiments. D. hansenii IMH3 and modified ARO4 genes conferring resistance to mycophenolic acid and fluorophenylalanine, respectively, were successfully used as new dominant selection markers for C. famata.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2010.10.005</identifier><identifier>PMID: 21040798</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>Candida ; Candida - classification ; Candida - genetics ; Candida - metabolism ; Candida famata ; Cloning, Molecular ; Debaryomyces hansenii ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Genetic Enhancement - methods ; Recombinant Proteins - metabolism ; Riboflavin ; Riboflavin - biosynthesis ; Riboflavin - genetics ; Riboflavin overproducers ; Signal Transduction - physiology ; Species Specificity ; Vitamin B 2 ; Yeast</subject><ispartof>Metabolic engineering, 2011, Vol.13 (1), p.82-88</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright © 2010 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-e5498407272a524410a7f98022e1821762a768f0e6c876ae3843b8e98c8781be3</citedby><cites>FETCH-LOGICAL-c390t-e5498407272a524410a7f98022e1821762a768f0e6c876ae3843b8e98c8781be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymben.2010.10.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21040798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dmytruk, Kostyantyn V.</creatorcontrib><creatorcontrib>Yatsyshyn, Valentyna Y.</creatorcontrib><creatorcontrib>Sybirna, Natalia O.</creatorcontrib><creatorcontrib>Fedorovych, Daria V.</creatorcontrib><creatorcontrib>Sibirny, Andriy A.</creatorcontrib><title>Metabolic engineering and classic selection of the yeast Candida famata ( Candida flareri) for construction of strains with enhanced riboflavin production</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>Currently, the mutant of the flavinogenic yeast Candida famata dep8 isolated by classic mutagenesis and selection is used for industrial riboflavin production. Here we report on construction of a riboflavin overproducing strain of C. famata using a combination of random mutagenesis based on the selection of mutants resistant to different antimetabolites as well as rational approaches of metabolic engineering. The conventional mutagenesis involved consecutive selection for resistance to riboflavin structural analog 7-methyl-8-trifluoromethyl-10-(1'-d-ribityl)isoalloxazine), 8-azaguanine, 6-azauracil, 2-diazo-5-oxo-L-norleucine and guanosine as well as screening for yellow colonies at high pH. The metabolic engineering approaches involved introduction of additional copies of transcription factor SEF1 and IMH3 (coding for IMP dehydrogenase) orthologs from Debaryomyces hansenii, and the homologous genes RIB1 and RIB7, encoding GTP cyclohydrolase II and riboflavin synthetase, the first and the last enzymes of riboflavin biosynthesis pathway, respectively. Overexpression of the aforementioned genes in riboflavin overproducer AF-4 obtained by classical selection resulted in a 4.1-fold increase in riboflavin production in shake-flask experiments. D. hansenii IMH3 and modified ARO4 genes conferring resistance to mycophenolic acid and fluorophenylalanine, respectively, were successfully used as new dominant selection markers for C. famata.</description><subject>Candida</subject><subject>Candida - classification</subject><subject>Candida - genetics</subject><subject>Candida - metabolism</subject><subject>Candida famata</subject><subject>Cloning, Molecular</subject><subject>Debaryomyces hansenii</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Genetic Enhancement - methods</subject><subject>Recombinant Proteins - metabolism</subject><subject>Riboflavin</subject><subject>Riboflavin - biosynthesis</subject><subject>Riboflavin - genetics</subject><subject>Riboflavin overproducers</subject><subject>Signal Transduction - physiology</subject><subject>Species Specificity</subject><subject>Vitamin B 2</subject><subject>Yeast</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UctOwzAQtBCI9xcgId-AQ4vtpIlz4IAqXlIRFzhbG2dDXSU22G5Rf4WvxaVQbpzsHc3saHYIOeFsyBkvLmfDZV-jHQr2jQwZG22Rfc6qYlBymW9v_mWxRw5CmDHG-ajiu2RPcJazspL75PMRI9SuM5qifTUW0Rv7SsE2VHcQQsIDdqijcZa6lsYp0iVCiHScOKYB2kIPEej5H9CBT1suaOs81c6G6OcbfRrA2EA_TJwmxylYjQ31pnZJtjCWvnnXrOlHZKeFLuDxz3tIXm5vnsf3g8nT3cP4ejLQWcXiAEd5JVMaUQoYiTznDMq2kkwI5FKk8ALKQrYMCy3LAjCTeVZLrGQaJa8xOyRn673J-n2OIareBI1dBxbdPKiKS5bLLCsSM1sztXcheGzVmzc9-KXiTK06UTP13YladbICUydJdfqzf1732Gw0vyUkwtWagCnlwqBXQRtcHcb4dHnVOPOvwReayJ_s</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Dmytruk, Kostyantyn V.</creator><creator>Yatsyshyn, Valentyna Y.</creator><creator>Sybirna, Natalia O.</creator><creator>Fedorovych, Daria V.</creator><creator>Sibirny, Andriy A.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>2011</creationdate><title>Metabolic engineering and classic selection of the yeast Candida famata ( Candida flareri) for construction of strains with enhanced riboflavin production</title><author>Dmytruk, Kostyantyn V. ; Yatsyshyn, Valentyna Y. ; Sybirna, Natalia O. ; Fedorovych, Daria V. ; Sibirny, Andriy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-e5498407272a524410a7f98022e1821762a768f0e6c876ae3843b8e98c8781be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Candida</topic><topic>Candida - classification</topic><topic>Candida - genetics</topic><topic>Candida - metabolism</topic><topic>Candida famata</topic><topic>Cloning, Molecular</topic><topic>Debaryomyces hansenii</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Genetic Enhancement - methods</topic><topic>Recombinant Proteins - metabolism</topic><topic>Riboflavin</topic><topic>Riboflavin - biosynthesis</topic><topic>Riboflavin - genetics</topic><topic>Riboflavin overproducers</topic><topic>Signal Transduction - physiology</topic><topic>Species Specificity</topic><topic>Vitamin B 2</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dmytruk, Kostyantyn V.</creatorcontrib><creatorcontrib>Yatsyshyn, Valentyna Y.</creatorcontrib><creatorcontrib>Sybirna, Natalia O.</creatorcontrib><creatorcontrib>Fedorovych, Daria V.</creatorcontrib><creatorcontrib>Sibirny, Andriy A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dmytruk, Kostyantyn V.</au><au>Yatsyshyn, Valentyna Y.</au><au>Sybirna, Natalia O.</au><au>Fedorovych, Daria V.</au><au>Sibirny, Andriy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering and classic selection of the yeast Candida famata ( Candida flareri) for construction of strains with enhanced riboflavin production</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2011</date><risdate>2011</risdate><volume>13</volume><issue>1</issue><spage>82</spage><epage>88</epage><pages>82-88</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>Currently, the mutant of the flavinogenic yeast Candida famata dep8 isolated by classic mutagenesis and selection is used for industrial riboflavin production. Here we report on construction of a riboflavin overproducing strain of C. famata using a combination of random mutagenesis based on the selection of mutants resistant to different antimetabolites as well as rational approaches of metabolic engineering. The conventional mutagenesis involved consecutive selection for resistance to riboflavin structural analog 7-methyl-8-trifluoromethyl-10-(1'-d-ribityl)isoalloxazine), 8-azaguanine, 6-azauracil, 2-diazo-5-oxo-L-norleucine and guanosine as well as screening for yellow colonies at high pH. The metabolic engineering approaches involved introduction of additional copies of transcription factor SEF1 and IMH3 (coding for IMP dehydrogenase) orthologs from Debaryomyces hansenii, and the homologous genes RIB1 and RIB7, encoding GTP cyclohydrolase II and riboflavin synthetase, the first and the last enzymes of riboflavin biosynthesis pathway, respectively. Overexpression of the aforementioned genes in riboflavin overproducer AF-4 obtained by classical selection resulted in a 4.1-fold increase in riboflavin production in shake-flask experiments. D. hansenii IMH3 and modified ARO4 genes conferring resistance to mycophenolic acid and fluorophenylalanine, respectively, were successfully used as new dominant selection markers for C. famata.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>21040798</pmid><doi>10.1016/j.ymben.2010.10.005</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1096-7176
ispartof Metabolic engineering, 2011, Vol.13 (1), p.82-88
issn 1096-7176
1096-7184
language eng
recordid cdi_proquest_miscellaneous_918048336
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Candida
Candida - classification
Candida - genetics
Candida - metabolism
Candida famata
Cloning, Molecular
Debaryomyces hansenii
Fungal Proteins - genetics
Fungal Proteins - metabolism
Genetic Enhancement - methods
Recombinant Proteins - metabolism
Riboflavin
Riboflavin - biosynthesis
Riboflavin - genetics
Riboflavin overproducers
Signal Transduction - physiology
Species Specificity
Vitamin B 2
Yeast
title Metabolic engineering and classic selection of the yeast Candida famata ( Candida flareri) for construction of strains with enhanced riboflavin production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20and%20classic%20selection%20of%20the%20yeast%20Candida%20famata%20(%20Candida%20flareri)%20for%20construction%20of%20strains%20with%20enhanced%20riboflavin%20production&rft.jtitle=Metabolic%20engineering&rft.au=Dmytruk,%20Kostyantyn%20V.&rft.date=2011&rft.volume=13&rft.issue=1&rft.spage=82&rft.epage=88&rft.pages=82-88&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2010.10.005&rft_dat=%3Cproquest_cross%3E918048336%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918048336&rft_id=info:pmid/21040798&rft_els_id=S1096717610000960&rfr_iscdi=true