High-performance Si microwire photovoltaics

Crystalline Si wires, grown by the vapor-liquid-solid (VLS) process, have emerged as promising candidate materials for low-cost, thin-film photovoltaics. Here, we demonstrate VLS-grown Si microwires that have suitable electrical properties for high-performance photovoltaic applications, including lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2011-01, Vol.4 (3), p.866-871
Hauptverfasser: Kelzenberg, Michael D, Turner-Evans, Daniel B, Putnam, Morgan C, Boettcher, Shannon W, Briggs, Ryan M, Baek, Jae Yeon, Lewis, Nathan S, Atwater, Harry A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 871
container_issue 3
container_start_page 866
container_title Energy & environmental science
container_volume 4
creator Kelzenberg, Michael D
Turner-Evans, Daniel B
Putnam, Morgan C
Boettcher, Shannon W
Briggs, Ryan M
Baek, Jae Yeon
Lewis, Nathan S
Atwater, Harry A
description Crystalline Si wires, grown by the vapor-liquid-solid (VLS) process, have emerged as promising candidate materials for low-cost, thin-film photovoltaics. Here, we demonstrate VLS-grown Si microwires that have suitable electrical properties for high-performance photovoltaic applications, including long minority-carrier diffusion lengths (Ln [dbl greater-than] 30 [small micro]m) and low surface recombination velocities (S [double less-than] 70 cm[middle dot]s-1). Single-wire radial p-n junction solar cells were fabricated with amorphous silicon and silicon nitride surface coatings, achieving up to 9.0% apparent photovoltaic efficiency, and exhibiting up to [similar]600 mV open-circuit voltage with over 80% fill factor. Projective single-wire measurements and optoelectronic simulations suggest that large-area Si wire-array solar cells have the potential to exceed 17% energy-conversion efficiency, offering a promising route toward cost-effective crystalline Si photovoltaics.
doi_str_mv 10.1039/C0EE00549E
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_918045567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1777136771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-966ed531a9c57d0bf8fcf199fec9d26f7c9863cb09e3616d43aefcbb174e6a473</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4QkqLiBQwI7_4iOqAkWqxAE4R85mTY2SONgpiLenpXDlsrOHTzOaIeSU0WtGubmZ07KkVApT7pEJ01JkUlO1__crkx-So5TeKFU51WZCrhb-dZUNGF2Ine0BZ09-1nmI4dNHnA2rMIaP0I7WQzomB862CU9-dUpe7srn-SJbPt4_zG-XGYhcjplRChvJmTUgdUNrVzhwzBiHYJpcOQ2mUBxqapArphrBLTqoa6YFKis0n5KznW9Io68S-BFhBaHvEcaKUSWMzDfQ-Q4aYnhfYxqrzifAtrU9hnWqDCuokFJt7S7-JZnWmnG1PVNyuUM3_VOK6Koh-s7Gr01stR24Aor4MzDybyjzbLs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777136771</pqid></control><display><type>article</type><title>High-performance Si microwire photovoltaics</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Kelzenberg, Michael D ; Turner-Evans, Daniel B ; Putnam, Morgan C ; Boettcher, Shannon W ; Briggs, Ryan M ; Baek, Jae Yeon ; Lewis, Nathan S ; Atwater, Harry A</creator><creatorcontrib>Kelzenberg, Michael D ; Turner-Evans, Daniel B ; Putnam, Morgan C ; Boettcher, Shannon W ; Briggs, Ryan M ; Baek, Jae Yeon ; Lewis, Nathan S ; Atwater, Harry A ; Energy Frontier Research Centers (EFRC) ; Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><description>Crystalline Si wires, grown by the vapor-liquid-solid (VLS) process, have emerged as promising candidate materials for low-cost, thin-film photovoltaics. Here, we demonstrate VLS-grown Si microwires that have suitable electrical properties for high-performance photovoltaic applications, including long minority-carrier diffusion lengths (Ln [dbl greater-than] 30 [small micro]m) and low surface recombination velocities (S [double less-than] 70 cm[middle dot]s-1). Single-wire radial p-n junction solar cells were fabricated with amorphous silicon and silicon nitride surface coatings, achieving up to 9.0% apparent photovoltaic efficiency, and exhibiting up to [similar]600 mV open-circuit voltage with over 80% fill factor. Projective single-wire measurements and optoelectronic simulations suggest that large-area Si wire-array solar cells have the potential to exceed 17% energy-conversion efficiency, offering a promising route toward cost-effective crystalline Si photovoltaics.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/C0EE00549E</identifier><language>eng</language><publisher>United States</publisher><subject>Crystal structure ; Diffusion length ; Electric potential ; Electrical properties ; electrodes - solar ; materials and chemistry by design ; optics ; phonons ; Photovoltaic cells ; Silicon ; solar (photovoltaic) ; Solar cells ; SOLAR ENERGY ; solid state lighting ; synthesis (novel materials) ; synthesis (self-assembly) ; thermal conductivity ; Voltage</subject><ispartof>Energy &amp; environmental science, 2011-01, Vol.4 (3), p.866-871</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-966ed531a9c57d0bf8fcf199fec9d26f7c9863cb09e3616d43aefcbb174e6a473</citedby><cites>FETCH-LOGICAL-c425t-966ed531a9c57d0bf8fcf199fec9d26f7c9863cb09e3616d43aefcbb174e6a473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1064952$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelzenberg, Michael D</creatorcontrib><creatorcontrib>Turner-Evans, Daniel B</creatorcontrib><creatorcontrib>Putnam, Morgan C</creatorcontrib><creatorcontrib>Boettcher, Shannon W</creatorcontrib><creatorcontrib>Briggs, Ryan M</creatorcontrib><creatorcontrib>Baek, Jae Yeon</creatorcontrib><creatorcontrib>Lewis, Nathan S</creatorcontrib><creatorcontrib>Atwater, Harry A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><title>High-performance Si microwire photovoltaics</title><title>Energy &amp; environmental science</title><description>Crystalline Si wires, grown by the vapor-liquid-solid (VLS) process, have emerged as promising candidate materials for low-cost, thin-film photovoltaics. Here, we demonstrate VLS-grown Si microwires that have suitable electrical properties for high-performance photovoltaic applications, including long minority-carrier diffusion lengths (Ln [dbl greater-than] 30 [small micro]m) and low surface recombination velocities (S [double less-than] 70 cm[middle dot]s-1). Single-wire radial p-n junction solar cells were fabricated with amorphous silicon and silicon nitride surface coatings, achieving up to 9.0% apparent photovoltaic efficiency, and exhibiting up to [similar]600 mV open-circuit voltage with over 80% fill factor. Projective single-wire measurements and optoelectronic simulations suggest that large-area Si wire-array solar cells have the potential to exceed 17% energy-conversion efficiency, offering a promising route toward cost-effective crystalline Si photovoltaics.</description><subject>Crystal structure</subject><subject>Diffusion length</subject><subject>Electric potential</subject><subject>Electrical properties</subject><subject>electrodes - solar</subject><subject>materials and chemistry by design</subject><subject>optics</subject><subject>phonons</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>solar (photovoltaic)</subject><subject>Solar cells</subject><subject>SOLAR ENERGY</subject><subject>solid state lighting</subject><subject>synthesis (novel materials)</subject><subject>synthesis (self-assembly)</subject><subject>thermal conductivity</subject><subject>Voltage</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqVw4QkqLiBQwI7_4iOqAkWqxAE4R85mTY2SONgpiLenpXDlsrOHTzOaIeSU0WtGubmZ07KkVApT7pEJ01JkUlO1__crkx-So5TeKFU51WZCrhb-dZUNGF2Ine0BZ09-1nmI4dNHnA2rMIaP0I7WQzomB862CU9-dUpe7srn-SJbPt4_zG-XGYhcjplRChvJmTUgdUNrVzhwzBiHYJpcOQ2mUBxqapArphrBLTqoa6YFKis0n5KznW9Io68S-BFhBaHvEcaKUSWMzDfQ-Q4aYnhfYxqrzifAtrU9hnWqDCuokFJt7S7-JZnWmnG1PVNyuUM3_VOK6Koh-s7Gr01stR24Aor4MzDybyjzbLs</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Kelzenberg, Michael D</creator><creator>Turner-Evans, Daniel B</creator><creator>Putnam, Morgan C</creator><creator>Boettcher, Shannon W</creator><creator>Briggs, Ryan M</creator><creator>Baek, Jae Yeon</creator><creator>Lewis, Nathan S</creator><creator>Atwater, Harry A</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>20110101</creationdate><title>High-performance Si microwire photovoltaics</title><author>Kelzenberg, Michael D ; Turner-Evans, Daniel B ; Putnam, Morgan C ; Boettcher, Shannon W ; Briggs, Ryan M ; Baek, Jae Yeon ; Lewis, Nathan S ; Atwater, Harry A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-966ed531a9c57d0bf8fcf199fec9d26f7c9863cb09e3616d43aefcbb174e6a473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Crystal structure</topic><topic>Diffusion length</topic><topic>Electric potential</topic><topic>Electrical properties</topic><topic>electrodes - solar</topic><topic>materials and chemistry by design</topic><topic>optics</topic><topic>phonons</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>solar (photovoltaic)</topic><topic>Solar cells</topic><topic>SOLAR ENERGY</topic><topic>solid state lighting</topic><topic>synthesis (novel materials)</topic><topic>synthesis (self-assembly)</topic><topic>thermal conductivity</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelzenberg, Michael D</creatorcontrib><creatorcontrib>Turner-Evans, Daniel B</creatorcontrib><creatorcontrib>Putnam, Morgan C</creatorcontrib><creatorcontrib>Boettcher, Shannon W</creatorcontrib><creatorcontrib>Briggs, Ryan M</creatorcontrib><creatorcontrib>Baek, Jae Yeon</creatorcontrib><creatorcontrib>Lewis, Nathan S</creatorcontrib><creatorcontrib>Atwater, Harry A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelzenberg, Michael D</au><au>Turner-Evans, Daniel B</au><au>Putnam, Morgan C</au><au>Boettcher, Shannon W</au><au>Briggs, Ryan M</au><au>Baek, Jae Yeon</au><au>Lewis, Nathan S</au><au>Atwater, Harry A</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Light-Material Interactions in Energy Conversion (LMI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance Si microwire photovoltaics</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>4</volume><issue>3</issue><spage>866</spage><epage>871</epage><pages>866-871</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Crystalline Si wires, grown by the vapor-liquid-solid (VLS) process, have emerged as promising candidate materials for low-cost, thin-film photovoltaics. Here, we demonstrate VLS-grown Si microwires that have suitable electrical properties for high-performance photovoltaic applications, including long minority-carrier diffusion lengths (Ln [dbl greater-than] 30 [small micro]m) and low surface recombination velocities (S [double less-than] 70 cm[middle dot]s-1). Single-wire radial p-n junction solar cells were fabricated with amorphous silicon and silicon nitride surface coatings, achieving up to 9.0% apparent photovoltaic efficiency, and exhibiting up to [similar]600 mV open-circuit voltage with over 80% fill factor. Projective single-wire measurements and optoelectronic simulations suggest that large-area Si wire-array solar cells have the potential to exceed 17% energy-conversion efficiency, offering a promising route toward cost-effective crystalline Si photovoltaics.</abstract><cop>United States</cop><doi>10.1039/C0EE00549E</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2011-01, Vol.4 (3), p.866-871
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_miscellaneous_918045567
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Crystal structure
Diffusion length
Electric potential
Electrical properties
electrodes - solar
materials and chemistry by design
optics
phonons
Photovoltaic cells
Silicon
solar (photovoltaic)
Solar cells
SOLAR ENERGY
solid state lighting
synthesis (novel materials)
synthesis (self-assembly)
thermal conductivity
Voltage
title High-performance Si microwire photovoltaics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20Si%20microwire%20photovoltaics&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Kelzenberg,%20Michael%20D&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2011-01-01&rft.volume=4&rft.issue=3&rft.spage=866&rft.epage=871&rft.pages=866-871&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/C0EE00549E&rft_dat=%3Cproquest_osti_%3E1777136771%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777136771&rft_id=info:pmid/&rfr_iscdi=true