A PLS regression model using NIR spectroscopy for on-line monitoring of the biodiesel production reaction

► NIR spectroscopy was applied online to monitor the soybean oil transesterification. ► PLS model was developed to predict the conversion of triglycerides to methyl esters. ► A new spectral range was employed to develop the model. ► The model was applied to monitor different reactions temperatures....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2011-11, Vol.90 (11), p.3268-3273
Hauptverfasser: Killner, Mario H.M., Rohwedder, Jarbas J.R., Pasquini, Celio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3273
container_issue 11
container_start_page 3268
container_title Fuel (Guildford)
container_volume 90
creator Killner, Mario H.M.
Rohwedder, Jarbas J.R.
Pasquini, Celio
description ► NIR spectroscopy was applied online to monitor the soybean oil transesterification. ► PLS model was developed to predict the conversion of triglycerides to methyl esters. ► A new spectral range was employed to develop the model. ► The model was applied to monitor different reactions temperatures. In this work, a Partial Least Squares (PLS) regression model using Near-Infrared (NIR) spectroscopy was developed to monitor the progress of the catalyzed transesterification reactions of soybean oil that produce biodiesel. The NIR spectra were collected during the transesterification reaction with a lab made spectrophotometric flow cell. Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy was employed for determining the conversion percentage of glycerides to methyl esters during the transesterification reaction and used as reference to build the PLS calibration model employing NIR spectroscopy data. The model, constructed with selected spectral range has not been tried before and allows the monitoring of the transesterification reaction in terms of conversion ratio for different temperatures. The model was validated and the values of Root Mean Square Error of Prediction (RMSEP) found for two different temperatures were 0.74% and 1.27% (of conversion) for reactions carried out at 20±0.2°C and 55±0.2°C, respectively.
doi_str_mv 10.1016/j.fuel.2011.06.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918045401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236111003437</els_id><sourcerecordid>918045401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-d81130159472a7452bd9c0d3524c713ab79bd19c50a73ec6f0e1f02ecf52a7fe3</originalsourceid><addsrcrecordid>eNp90U1v1DAQBmALgcRS-AOcfEFwSTpjx_FG4lJVfFRaAeLjbHntcfEqGy92gtR_j8NWPfZkH553bM3L2GuEFgH7y0MbFhpbAYgt9C0I9YRtcKtlo1HJp2wDVTVC9vicvSjlAAB6q7oNi1f82-4Hz3SbqZSYJn5Mnka-lDjd8i8333k5kZtzKi6d7nhImaepGeNEFU5xTnl1KfD5N_F9TD5SqfFTTn5x8zovk_1_ecmeBTsWenV_XrBfHz_8vP7c7L5-urm-2jWuk8Pc-C2iBFRDp4XVnRJ7PzjwUonOaZR2r4e9x8EpsFqS6wMQBhDkgqo-kLxgb89z6x_-LFRmc4zF0TjaidJSzIBb6FQHWOW7RyVqrVH0oFWl4kxd3UTJFMwpx6PNdwbBrA2Yg1kbMGsDBnpTG6ihN_fzbXF2DNlOLpaHpOhUX9Xq3p8d1bX8jZRNcZEmRz7munvjU3zsmX889JyL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777126075</pqid></control><display><type>article</type><title>A PLS regression model using NIR spectroscopy for on-line monitoring of the biodiesel production reaction</title><source>Elsevier ScienceDirect Journals</source><creator>Killner, Mario H.M. ; Rohwedder, Jarbas J.R. ; Pasquini, Celio</creator><creatorcontrib>Killner, Mario H.M. ; Rohwedder, Jarbas J.R. ; Pasquini, Celio</creatorcontrib><description>► NIR spectroscopy was applied online to monitor the soybean oil transesterification. ► PLS model was developed to predict the conversion of triglycerides to methyl esters. ► A new spectral range was employed to develop the model. ► The model was applied to monitor different reactions temperatures. In this work, a Partial Least Squares (PLS) regression model using Near-Infrared (NIR) spectroscopy was developed to monitor the progress of the catalyzed transesterification reactions of soybean oil that produce biodiesel. The NIR spectra were collected during the transesterification reaction with a lab made spectrophotometric flow cell. Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy was employed for determining the conversion percentage of glycerides to methyl esters during the transesterification reaction and used as reference to build the PLS calibration model employing NIR spectroscopy data. The model, constructed with selected spectral range has not been tried before and allows the monitoring of the transesterification reaction in terms of conversion ratio for different temperatures. The model was validated and the values of Root Mean Square Error of Prediction (RMSEP) found for two different temperatures were 0.74% and 1.27% (of conversion) for reactions carried out at 20±0.2°C and 55±0.2°C, respectively.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2011.06.025</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>1H NMR ; Applied sciences ; Biodiesel ; Construction ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fuels ; Mathematical models ; Monitoring ; Near infrared spectroscopy ; PLS ; Regression ; Spectra ; Spectroscopy ; Transesterification</subject><ispartof>Fuel (Guildford), 2011-11, Vol.90 (11), p.3268-3273</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-d81130159472a7452bd9c0d3524c713ab79bd19c50a73ec6f0e1f02ecf52a7fe3</citedby><cites>FETCH-LOGICAL-c439t-d81130159472a7452bd9c0d3524c713ab79bd19c50a73ec6f0e1f02ecf52a7fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2011.06.025$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24562535$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Killner, Mario H.M.</creatorcontrib><creatorcontrib>Rohwedder, Jarbas J.R.</creatorcontrib><creatorcontrib>Pasquini, Celio</creatorcontrib><title>A PLS regression model using NIR spectroscopy for on-line monitoring of the biodiesel production reaction</title><title>Fuel (Guildford)</title><description>► NIR spectroscopy was applied online to monitor the soybean oil transesterification. ► PLS model was developed to predict the conversion of triglycerides to methyl esters. ► A new spectral range was employed to develop the model. ► The model was applied to monitor different reactions temperatures. In this work, a Partial Least Squares (PLS) regression model using Near-Infrared (NIR) spectroscopy was developed to monitor the progress of the catalyzed transesterification reactions of soybean oil that produce biodiesel. The NIR spectra were collected during the transesterification reaction with a lab made spectrophotometric flow cell. Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy was employed for determining the conversion percentage of glycerides to methyl esters during the transesterification reaction and used as reference to build the PLS calibration model employing NIR spectroscopy data. The model, constructed with selected spectral range has not been tried before and allows the monitoring of the transesterification reaction in terms of conversion ratio for different temperatures. The model was validated and the values of Root Mean Square Error of Prediction (RMSEP) found for two different temperatures were 0.74% and 1.27% (of conversion) for reactions carried out at 20±0.2°C and 55±0.2°C, respectively.</description><subject>1H NMR</subject><subject>Applied sciences</subject><subject>Biodiesel</subject><subject>Construction</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Near infrared spectroscopy</subject><subject>PLS</subject><subject>Regression</subject><subject>Spectra</subject><subject>Spectroscopy</subject><subject>Transesterification</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp90U1v1DAQBmALgcRS-AOcfEFwSTpjx_FG4lJVfFRaAeLjbHntcfEqGy92gtR_j8NWPfZkH553bM3L2GuEFgH7y0MbFhpbAYgt9C0I9YRtcKtlo1HJp2wDVTVC9vicvSjlAAB6q7oNi1f82-4Hz3SbqZSYJn5Mnka-lDjd8i8333k5kZtzKi6d7nhImaepGeNEFU5xTnl1KfD5N_F9TD5SqfFTTn5x8zovk_1_ecmeBTsWenV_XrBfHz_8vP7c7L5-urm-2jWuk8Pc-C2iBFRDp4XVnRJ7PzjwUonOaZR2r4e9x8EpsFqS6wMQBhDkgqo-kLxgb89z6x_-LFRmc4zF0TjaidJSzIBb6FQHWOW7RyVqrVH0oFWl4kxd3UTJFMwpx6PNdwbBrA2Yg1kbMGsDBnpTG6ihN_fzbXF2DNlOLpaHpOhUX9Xq3p8d1bX8jZRNcZEmRz7munvjU3zsmX889JyL</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Killner, Mario H.M.</creator><creator>Rohwedder, Jarbas J.R.</creator><creator>Pasquini, Celio</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20111101</creationdate><title>A PLS regression model using NIR spectroscopy for on-line monitoring of the biodiesel production reaction</title><author>Killner, Mario H.M. ; Rohwedder, Jarbas J.R. ; Pasquini, Celio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-d81130159472a7452bd9c0d3524c713ab79bd19c50a73ec6f0e1f02ecf52a7fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>1H NMR</topic><topic>Applied sciences</topic><topic>Biodiesel</topic><topic>Construction</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Near infrared spectroscopy</topic><topic>PLS</topic><topic>Regression</topic><topic>Spectra</topic><topic>Spectroscopy</topic><topic>Transesterification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Killner, Mario H.M.</creatorcontrib><creatorcontrib>Rohwedder, Jarbas J.R.</creatorcontrib><creatorcontrib>Pasquini, Celio</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Killner, Mario H.M.</au><au>Rohwedder, Jarbas J.R.</au><au>Pasquini, Celio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A PLS regression model using NIR spectroscopy for on-line monitoring of the biodiesel production reaction</atitle><jtitle>Fuel (Guildford)</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>90</volume><issue>11</issue><spage>3268</spage><epage>3273</epage><pages>3268-3273</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>► NIR spectroscopy was applied online to monitor the soybean oil transesterification. ► PLS model was developed to predict the conversion of triglycerides to methyl esters. ► A new spectral range was employed to develop the model. ► The model was applied to monitor different reactions temperatures. In this work, a Partial Least Squares (PLS) regression model using Near-Infrared (NIR) spectroscopy was developed to monitor the progress of the catalyzed transesterification reactions of soybean oil that produce biodiesel. The NIR spectra were collected during the transesterification reaction with a lab made spectrophotometric flow cell. Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy was employed for determining the conversion percentage of glycerides to methyl esters during the transesterification reaction and used as reference to build the PLS calibration model employing NIR spectroscopy data. The model, constructed with selected spectral range has not been tried before and allows the monitoring of the transesterification reaction in terms of conversion ratio for different temperatures. The model was validated and the values of Root Mean Square Error of Prediction (RMSEP) found for two different temperatures were 0.74% and 1.27% (of conversion) for reactions carried out at 20±0.2°C and 55±0.2°C, respectively.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2011.06.025</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2011-11, Vol.90 (11), p.3268-3273
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_miscellaneous_918045401
source Elsevier ScienceDirect Journals
subjects 1H NMR
Applied sciences
Biodiesel
Construction
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fuels
Mathematical models
Monitoring
Near infrared spectroscopy
PLS
Regression
Spectra
Spectroscopy
Transesterification
title A PLS regression model using NIR spectroscopy for on-line monitoring of the biodiesel production reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20PLS%20regression%20model%20using%20NIR%20spectroscopy%20for%20on-line%20monitoring%20of%20the%20biodiesel%20production%20reaction&rft.jtitle=Fuel%20(Guildford)&rft.au=Killner,%20Mario%20H.M.&rft.date=2011-11-01&rft.volume=90&rft.issue=11&rft.spage=3268&rft.epage=3273&rft.pages=3268-3273&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2011.06.025&rft_dat=%3Cproquest_cross%3E918045401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777126075&rft_id=info:pmid/&rft_els_id=S0016236111003437&rfr_iscdi=true