Analysis of Multimodal Neuroimaging Data

Each method for imaging brain activity has technical or physiological limits. Thus, combinations of neuroimaging modalities that can alleviate these limitations such as simultaneous recordings of neurophysiological and hemodynamic activity have become increasingly popular. Multimodal imaging setups...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE reviews in biomedical engineering 2011, Vol.4, p.26-58
Hauptverfasser: Biessmann, Felix, Plis, Sergey, Meinecke, Frank C., Eichele, Tom, Muller, Klaus-Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue
container_start_page 26
container_title IEEE reviews in biomedical engineering
container_volume 4
creator Biessmann, Felix
Plis, Sergey
Meinecke, Frank C.
Eichele, Tom
Muller, Klaus-Robert
description Each method for imaging brain activity has technical or physiological limits. Thus, combinations of neuroimaging modalities that can alleviate these limitations such as simultaneous recordings of neurophysiological and hemodynamic activity have become increasingly popular. Multimodal imaging setups can take advantage of complementary views on neural activity and enhance our understanding about how neural information processing is reflected in each modality. However, dedicated analysis methods are needed to exploit the potential of multimodal methods. Many solutions to this data integration problem have been proposed, which often renders both comparisons of results and the choice of the right method for the data at hand difficult. In this review we will discuss different multimodal neuroimaging setups, the advances achieved in basic research and clinical application and the methods used. We will provide a comprehensive overview of mathematical tools reoccurring in multimodal neuroimaging studies for artifact removal, data-driven and model-driven analyses, enabling the practitioner to try established or new combinations from these algorithmic building blocks.
doi_str_mv 10.1109/RBME.2011.2170675
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_918038365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6035960</ieee_id><sourcerecordid>918038365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-8eee8eb9a1eda6b903cddda4a41bde80b6e859d93db611fb57e6649e8334abf3</originalsourceid><addsrcrecordid>eNpdkN9LwzAQx4Mobsz9ASJI8UVfOnNJmyaPc84fsCnI3kvSXEdHu86mfdh_b-rmHryHu0A-d_D9EHINdAJA1ePX03I-YRRgwiChIonPyBBUBCGAVOf9mych9zUgY-c21FccJSDpJRkwxhKeKDokD9OtLveucEGdB8uubIuqtroMPrBr6qLS62K7Dp51q6_IRa5Lh-PjHJHVy3w1ewsXn6_vs-kizJhgbSgRUaJRGtBqYRTlmbVWRzoCY1FSI1DGyipujQDITZygEJFCyXmkTc5H5P5wdtfU3x26Nq0Kl2FZ6i3WnUuVD8AlF7En7_6Rm7prfJoeEkzS-BeCA5Q1tXMN5umu8amafQo07TWmvca015geNfqd2-PhzlRoTxt_0jxwcwAKH_b0LSiPlW8_Ui908A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916280565</pqid></control><display><type>article</type><title>Analysis of Multimodal Neuroimaging Data</title><source>IEEE Electronic Library (IEL)</source><creator>Biessmann, Felix ; Plis, Sergey ; Meinecke, Frank C. ; Eichele, Tom ; Muller, Klaus-Robert</creator><creatorcontrib>Biessmann, Felix ; Plis, Sergey ; Meinecke, Frank C. ; Eichele, Tom ; Muller, Klaus-Robert</creatorcontrib><description>Each method for imaging brain activity has technical or physiological limits. Thus, combinations of neuroimaging modalities that can alleviate these limitations such as simultaneous recordings of neurophysiological and hemodynamic activity have become increasingly popular. Multimodal imaging setups can take advantage of complementary views on neural activity and enhance our understanding about how neural information processing is reflected in each modality. However, dedicated analysis methods are needed to exploit the potential of multimodal methods. Many solutions to this data integration problem have been proposed, which often renders both comparisons of results and the choice of the right method for the data at hand difficult. In this review we will discuss different multimodal neuroimaging setups, the advances achieved in basic research and clinical application and the methods used. We will provide a comprehensive overview of mathematical tools reoccurring in multimodal neuroimaging studies for artifact removal, data-driven and model-driven analyses, enabling the practitioner to try established or new combinations from these algorithmic building blocks.</description><identifier>ISSN: 1937-3333</identifier><identifier>EISSN: 1941-1189</identifier><identifier>DOI: 10.1109/RBME.2011.2170675</identifier><identifier>PMID: 22273790</identifier><identifier>CODEN: IRBECO</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biomedical imaging ; Brain - physiology ; Brain modeling ; Diffusion Tensor Imaging ; EEG-functional magnetic resonance imaging (fMRI) ; Electroencephalograms (EEG) ; Electroencephalography ; Electroencephalography - methods ; Electrophysiology ; fMRI ; Hemodynamics ; Humans ; Image Processing, Computer-Assisted ; Magnetic Resonance Imaging - methods ; magnetoencephalograms (MEG) ; Magnetoencephalography - methods ; Medical imaging ; MEG-fMRI ; Methods ; multimodal ; near infrared spectroscopy (NIRS) ; Neuroimaging ; Optics and Photonics ; Positron-Emission Tomography - methods ; Spatial resolution ; Spectroscopy, Near-Infrared - methods ; Studies</subject><ispartof>IEEE reviews in biomedical engineering, 2011, Vol.4, p.26-58</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262t-8eee8eb9a1eda6b903cddda4a41bde80b6e859d93db611fb57e6649e8334abf3</citedby><cites>FETCH-LOGICAL-c262t-8eee8eb9a1eda6b903cddda4a41bde80b6e859d93db611fb57e6649e8334abf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6035960$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6035960$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22273790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Biessmann, Felix</creatorcontrib><creatorcontrib>Plis, Sergey</creatorcontrib><creatorcontrib>Meinecke, Frank C.</creatorcontrib><creatorcontrib>Eichele, Tom</creatorcontrib><creatorcontrib>Muller, Klaus-Robert</creatorcontrib><title>Analysis of Multimodal Neuroimaging Data</title><title>IEEE reviews in biomedical engineering</title><addtitle>RBME</addtitle><addtitle>IEEE Rev Biomed Eng</addtitle><description>Each method for imaging brain activity has technical or physiological limits. Thus, combinations of neuroimaging modalities that can alleviate these limitations such as simultaneous recordings of neurophysiological and hemodynamic activity have become increasingly popular. Multimodal imaging setups can take advantage of complementary views on neural activity and enhance our understanding about how neural information processing is reflected in each modality. However, dedicated analysis methods are needed to exploit the potential of multimodal methods. Many solutions to this data integration problem have been proposed, which often renders both comparisons of results and the choice of the right method for the data at hand difficult. In this review we will discuss different multimodal neuroimaging setups, the advances achieved in basic research and clinical application and the methods used. We will provide a comprehensive overview of mathematical tools reoccurring in multimodal neuroimaging studies for artifact removal, data-driven and model-driven analyses, enabling the practitioner to try established or new combinations from these algorithmic building blocks.</description><subject>Biomedical imaging</subject><subject>Brain - physiology</subject><subject>Brain modeling</subject><subject>Diffusion Tensor Imaging</subject><subject>EEG-functional magnetic resonance imaging (fMRI)</subject><subject>Electroencephalograms (EEG)</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Electrophysiology</subject><subject>fMRI</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>magnetoencephalograms (MEG)</subject><subject>Magnetoencephalography - methods</subject><subject>Medical imaging</subject><subject>MEG-fMRI</subject><subject>Methods</subject><subject>multimodal</subject><subject>near infrared spectroscopy (NIRS)</subject><subject>Neuroimaging</subject><subject>Optics and Photonics</subject><subject>Positron-Emission Tomography - methods</subject><subject>Spatial resolution</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Studies</subject><issn>1937-3333</issn><issn>1941-1189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkN9LwzAQx4Mobsz9ASJI8UVfOnNJmyaPc84fsCnI3kvSXEdHu86mfdh_b-rmHryHu0A-d_D9EHINdAJA1ePX03I-YRRgwiChIonPyBBUBCGAVOf9mych9zUgY-c21FccJSDpJRkwxhKeKDokD9OtLveucEGdB8uubIuqtroMPrBr6qLS62K7Dp51q6_IRa5Lh-PjHJHVy3w1ewsXn6_vs-kizJhgbSgRUaJRGtBqYRTlmbVWRzoCY1FSI1DGyipujQDITZygEJFCyXmkTc5H5P5wdtfU3x26Nq0Kl2FZ6i3WnUuVD8AlF7En7_6Rm7prfJoeEkzS-BeCA5Q1tXMN5umu8amafQo07TWmvca015geNfqd2-PhzlRoTxt_0jxwcwAKH_b0LSiPlW8_Ui908A</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Biessmann, Felix</creator><creator>Plis, Sergey</creator><creator>Meinecke, Frank C.</creator><creator>Eichele, Tom</creator><creator>Muller, Klaus-Robert</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>2011</creationdate><title>Analysis of Multimodal Neuroimaging Data</title><author>Biessmann, Felix ; Plis, Sergey ; Meinecke, Frank C. ; Eichele, Tom ; Muller, Klaus-Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-8eee8eb9a1eda6b903cddda4a41bde80b6e859d93db611fb57e6649e8334abf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biomedical imaging</topic><topic>Brain - physiology</topic><topic>Brain modeling</topic><topic>Diffusion Tensor Imaging</topic><topic>EEG-functional magnetic resonance imaging (fMRI)</topic><topic>Electroencephalograms (EEG)</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Electrophysiology</topic><topic>fMRI</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>magnetoencephalograms (MEG)</topic><topic>Magnetoencephalography - methods</topic><topic>Medical imaging</topic><topic>MEG-fMRI</topic><topic>Methods</topic><topic>multimodal</topic><topic>near infrared spectroscopy (NIRS)</topic><topic>Neuroimaging</topic><topic>Optics and Photonics</topic><topic>Positron-Emission Tomography - methods</topic><topic>Spatial resolution</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biessmann, Felix</creatorcontrib><creatorcontrib>Plis, Sergey</creatorcontrib><creatorcontrib>Meinecke, Frank C.</creatorcontrib><creatorcontrib>Eichele, Tom</creatorcontrib><creatorcontrib>Muller, Klaus-Robert</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE reviews in biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Biessmann, Felix</au><au>Plis, Sergey</au><au>Meinecke, Frank C.</au><au>Eichele, Tom</au><au>Muller, Klaus-Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Multimodal Neuroimaging Data</atitle><jtitle>IEEE reviews in biomedical engineering</jtitle><stitle>RBME</stitle><addtitle>IEEE Rev Biomed Eng</addtitle><date>2011</date><risdate>2011</risdate><volume>4</volume><spage>26</spage><epage>58</epage><pages>26-58</pages><issn>1937-3333</issn><eissn>1941-1189</eissn><coden>IRBECO</coden><abstract>Each method for imaging brain activity has technical or physiological limits. Thus, combinations of neuroimaging modalities that can alleviate these limitations such as simultaneous recordings of neurophysiological and hemodynamic activity have become increasingly popular. Multimodal imaging setups can take advantage of complementary views on neural activity and enhance our understanding about how neural information processing is reflected in each modality. However, dedicated analysis methods are needed to exploit the potential of multimodal methods. Many solutions to this data integration problem have been proposed, which often renders both comparisons of results and the choice of the right method for the data at hand difficult. In this review we will discuss different multimodal neuroimaging setups, the advances achieved in basic research and clinical application and the methods used. We will provide a comprehensive overview of mathematical tools reoccurring in multimodal neuroimaging studies for artifact removal, data-driven and model-driven analyses, enabling the practitioner to try established or new combinations from these algorithmic building blocks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22273790</pmid><doi>10.1109/RBME.2011.2170675</doi><tpages>33</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1937-3333
ispartof IEEE reviews in biomedical engineering, 2011, Vol.4, p.26-58
issn 1937-3333
1941-1189
language eng
recordid cdi_proquest_miscellaneous_918038365
source IEEE Electronic Library (IEL)
subjects Biomedical imaging
Brain - physiology
Brain modeling
Diffusion Tensor Imaging
EEG-functional magnetic resonance imaging (fMRI)
Electroencephalograms (EEG)
Electroencephalography
Electroencephalography - methods
Electrophysiology
fMRI
Hemodynamics
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging - methods
magnetoencephalograms (MEG)
Magnetoencephalography - methods
Medical imaging
MEG-fMRI
Methods
multimodal
near infrared spectroscopy (NIRS)
Neuroimaging
Optics and Photonics
Positron-Emission Tomography - methods
Spatial resolution
Spectroscopy, Near-Infrared - methods
Studies
title Analysis of Multimodal Neuroimaging Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Multimodal%20Neuroimaging%20Data&rft.jtitle=IEEE%20reviews%20in%20biomedical%20engineering&rft.au=Biessmann,%20Felix&rft.date=2011&rft.volume=4&rft.spage=26&rft.epage=58&rft.pages=26-58&rft.issn=1937-3333&rft.eissn=1941-1189&rft.coden=IRBECO&rft_id=info:doi/10.1109/RBME.2011.2170675&rft_dat=%3Cproquest_RIE%3E918038365%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916280565&rft_id=info:pmid/22273790&rft_ieee_id=6035960&rfr_iscdi=true