Histopathological Image Analysis: A Review

Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE reviews in biomedical engineering 2009, Vol.2, p.147-171
Hauptverfasser: Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M., Yener, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue
container_start_page 147
container_title IEEE reviews in biomedical engineering
container_volume 2
creator Gurcan, M.N.
Boucheron, L.E.
Can, A.
Madabhushi, A.
Rajpoot, N.M.
Yener, B.
description Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe.
doi_str_mv 10.1109/RBME.2009.2034865
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_918035995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5299287</ieee_id><sourcerecordid>867737305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4405-c6238f66a4888e5d539813f2197c7a54b03b31c3364e4a8733334fb4831ff8283</originalsourceid><addsrcrecordid>eNqFkVFLQjEUx0cUKeYHiCCklyC4tu1sd1sPgYllYARSz2Ned3VydXanht--XTSpXjoP24HzO3_OOX-EzgluE4LV7fDhpdemGKv4AJMpP0J1ohhJCJHquMpBJBCjhpohzHAMzgSR-BTVKE6rjNXRTd-FlV-a1dQXfuIyU7Se52ZiW52FKbbBhbtWpzW0G2c_z9BJbopgm_u_gd4fe2_dfjJ4fXrudgZJxhjmSZZSkHmaGialtHzMQUkCOSVKZMJwNsIwApIBpMwyI0U1IstHTALJc0klNND9Tne5Hs3tOLOLVWkKvSzd3JRb7Y3TvysLN9UTv9FUxbsAjQLXe4HSf6xtWOm5C5ktCrOwfh20iqsDV4r_S8pUCBCAK_LqDznz6zLeKEJcQLSAQITIDspKH0Jp88PQBOvKNF2ZpivT9N602HP5c9tDx7dFEbjYAc5aeyhzqhSNx_sCQVSXuA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857320313</pqid></control><display><type>article</type><title>Histopathological Image Analysis: A Review</title><source>IEEE Electronic Library (IEL)</source><creator>Gurcan, M.N. ; Boucheron, L.E. ; Can, A. ; Madabhushi, A. ; Rajpoot, N.M. ; Yener, B.</creator><creatorcontrib>Gurcan, M.N. ; Boucheron, L.E. ; Can, A. ; Madabhushi, A. ; Rajpoot, N.M. ; Yener, B.</creatorcontrib><description>Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe.</description><identifier>ISSN: 1937-3333</identifier><identifier>ISSN: 1941-1189</identifier><identifier>EISSN: 1941-1189</identifier><identifier>DOI: 10.1109/RBME.2009.2034865</identifier><identifier>PMID: 20671804</identifier><identifier>CODEN: IRBECO</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Application software ; Artificial Intelligence ; Biomedical imaging ; Computer aided diagnosis ; Computer applications ; computer-assisted interpretation ; Coronary arteriosclerosis ; Digital images ; digital pathology ; Europe ; Histocytochemistry ; histopathology ; Humans ; Image analysis ; Image Interpretation, Computer-Assisted - methods ; Machine learning ; Machine learning algorithms ; Medical imaging ; microscopy analysis ; Prognosis ; Studies ; United States</subject><ispartof>IEEE reviews in biomedical engineering, 2009, Vol.2, p.147-171</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><rights>2009 IEEE 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4405-c6238f66a4888e5d539813f2197c7a54b03b31c3364e4a8733334fb4831ff8283</citedby><cites>FETCH-LOGICAL-c4405-c6238f66a4888e5d539813f2197c7a54b03b31c3364e4a8733334fb4831ff8283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5299287$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,4010,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5299287$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20671804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gurcan, M.N.</creatorcontrib><creatorcontrib>Boucheron, L.E.</creatorcontrib><creatorcontrib>Can, A.</creatorcontrib><creatorcontrib>Madabhushi, A.</creatorcontrib><creatorcontrib>Rajpoot, N.M.</creatorcontrib><creatorcontrib>Yener, B.</creatorcontrib><title>Histopathological Image Analysis: A Review</title><title>IEEE reviews in biomedical engineering</title><addtitle>RBME</addtitle><addtitle>IEEE Rev Biomed Eng</addtitle><description>Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Application software</subject><subject>Artificial Intelligence</subject><subject>Biomedical imaging</subject><subject>Computer aided diagnosis</subject><subject>Computer applications</subject><subject>computer-assisted interpretation</subject><subject>Coronary arteriosclerosis</subject><subject>Digital images</subject><subject>digital pathology</subject><subject>Europe</subject><subject>Histocytochemistry</subject><subject>histopathology</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Medical imaging</subject><subject>microscopy analysis</subject><subject>Prognosis</subject><subject>Studies</subject><subject>United States</subject><issn>1937-3333</issn><issn>1941-1189</issn><issn>1941-1189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkVFLQjEUx0cUKeYHiCCklyC4tu1sd1sPgYllYARSz2Ned3VydXanht--XTSpXjoP24HzO3_OOX-EzgluE4LV7fDhpdemGKv4AJMpP0J1ohhJCJHquMpBJBCjhpohzHAMzgSR-BTVKE6rjNXRTd-FlV-a1dQXfuIyU7Se52ZiW52FKbbBhbtWpzW0G2c_z9BJbopgm_u_gd4fe2_dfjJ4fXrudgZJxhjmSZZSkHmaGialtHzMQUkCOSVKZMJwNsIwApIBpMwyI0U1IstHTALJc0klNND9Tne5Hs3tOLOLVWkKvSzd3JRb7Y3TvysLN9UTv9FUxbsAjQLXe4HSf6xtWOm5C5ktCrOwfh20iqsDV4r_S8pUCBCAK_LqDznz6zLeKEJcQLSAQITIDspKH0Jp88PQBOvKNF2ZpivT9N602HP5c9tDx7dFEbjYAc5aeyhzqhSNx_sCQVSXuA</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Gurcan, M.N.</creator><creator>Boucheron, L.E.</creator><creator>Can, A.</creator><creator>Madabhushi, A.</creator><creator>Rajpoot, N.M.</creator><creator>Yener, B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2009</creationdate><title>Histopathological Image Analysis: A Review</title><author>Gurcan, M.N. ; Boucheron, L.E. ; Can, A. ; Madabhushi, A. ; Rajpoot, N.M. ; Yener, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4405-c6238f66a4888e5d539813f2197c7a54b03b31c3364e4a8733334fb4831ff8283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Application software</topic><topic>Artificial Intelligence</topic><topic>Biomedical imaging</topic><topic>Computer aided diagnosis</topic><topic>Computer applications</topic><topic>computer-assisted interpretation</topic><topic>Coronary arteriosclerosis</topic><topic>Digital images</topic><topic>digital pathology</topic><topic>Europe</topic><topic>Histocytochemistry</topic><topic>histopathology</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Medical imaging</topic><topic>microscopy analysis</topic><topic>Prognosis</topic><topic>Studies</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurcan, M.N.</creatorcontrib><creatorcontrib>Boucheron, L.E.</creatorcontrib><creatorcontrib>Can, A.</creatorcontrib><creatorcontrib>Madabhushi, A.</creatorcontrib><creatorcontrib>Rajpoot, N.M.</creatorcontrib><creatorcontrib>Yener, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE reviews in biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gurcan, M.N.</au><au>Boucheron, L.E.</au><au>Can, A.</au><au>Madabhushi, A.</au><au>Rajpoot, N.M.</au><au>Yener, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Histopathological Image Analysis: A Review</atitle><jtitle>IEEE reviews in biomedical engineering</jtitle><stitle>RBME</stitle><addtitle>IEEE Rev Biomed Eng</addtitle><date>2009</date><risdate>2009</risdate><volume>2</volume><spage>147</spage><epage>171</epage><pages>147-171</pages><issn>1937-3333</issn><issn>1941-1189</issn><eissn>1941-1189</eissn><coden>IRBECO</coden><abstract>Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20671804</pmid><doi>10.1109/RBME.2009.2034865</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1937-3333
ispartof IEEE reviews in biomedical engineering, 2009, Vol.2, p.147-171
issn 1937-3333
1941-1189
1941-1189
language eng
recordid cdi_proquest_miscellaneous_918035995
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Application software
Artificial Intelligence
Biomedical imaging
Computer aided diagnosis
Computer applications
computer-assisted interpretation
Coronary arteriosclerosis
Digital images
digital pathology
Europe
Histocytochemistry
histopathology
Humans
Image analysis
Image Interpretation, Computer-Assisted - methods
Machine learning
Machine learning algorithms
Medical imaging
microscopy analysis
Prognosis
Studies
United States
title Histopathological Image Analysis: A Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Histopathological%20Image%20Analysis:%20A%20Review&rft.jtitle=IEEE%20reviews%20in%20biomedical%20engineering&rft.au=Gurcan,%20M.N.&rft.date=2009&rft.volume=2&rft.spage=147&rft.epage=171&rft.pages=147-171&rft.issn=1937-3333&rft.eissn=1941-1189&rft.coden=IRBECO&rft_id=info:doi/10.1109/RBME.2009.2034865&rft_dat=%3Cproquest_RIE%3E867737305%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857320313&rft_id=info:pmid/20671804&rft_ieee_id=5299287&rfr_iscdi=true