Spectroscopic Identification of Ternary Cm−Carbonate Surface Complexes

The influence of dissolved CO2 on the sorption of trivalent curium (Cm) on alumina (γ-Al2O3) and kaolinite was investigated by time resolved laser fluorescence spectroscopy (TRLFS) using the optical properties of Cm as a local luminescent probe. Measurements were performed at T < 20 K on Cm loade...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2010-02, Vol.44 (3), p.921-927
Hauptverfasser: Fernandes, M. Marques, Stumpf, T, Baeyens, B, Walther, C, Bradbury, M. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 927
container_issue 3
container_start_page 921
container_title Environmental science & technology
container_volume 44
creator Fernandes, M. Marques
Stumpf, T
Baeyens, B
Walther, C
Bradbury, M. H
description The influence of dissolved CO2 on the sorption of trivalent curium (Cm) on alumina (γ-Al2O3) and kaolinite was investigated by time resolved laser fluorescence spectroscopy (TRLFS) using the optical properties of Cm as a local luminescent probe. Measurements were performed at T < 20 K on Cm loaded γ-Al2O3 and kaolinite wet pastes prepared in the absence and presence of carbonate in order to pictorially illustrate any changes through a direct comparison of spectra from both systems. The red-shift of excitation and emission spectra, as well as the increase of fluorescence lifetimes observed in the samples with carbonate, clearly showed the influence of carbonate and was fully consistent with the formation of Cm(III) surface species involving carbonate complexes. In addition, the biexponential decay behavior of the fluorescence lifetime indicated that at least two different Cm(III)−carbonate species exist at the mineral−water interface. These results provide the first spectroscopic evidence for the formation of ternary Cm(III)−carbonate surface complexes.
doi_str_mv 10.1021/es902175w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_918035595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733715087</sourcerecordid><originalsourceid>FETCH-LOGICAL-a403t-df9fd9d30c179bafcbeb0d501e0417686408b05ee7c4e26a77d98e9c688a425b3</originalsourceid><addsrcrecordid>eNqF0c1q3DAQB3BREprttoe-QDGFUHJwOrIsSzoW0yQLgRyygd6MLI_AwbZcySbNG-ScR-yTRGE3u5AccprLj_n4DyFfKZxSyOhPDCoWwe8-kAXlGaRccnpAFgCUpYoVf47IpxBuASBjID-SowyAQ8GLBbm4HtFM3gXjxtYkqwaHqbWt0VPrhsTZZI1-0P4-Kfv_D4-l9rUb9ITJ9eytNpiUrh87_IfhMzm0ugv4ZVuX5Obs97q8SC-vzlflr8tU58CmtLHKNqphYKhQtbamxhoaDhQhp6KQRQ6yBo4oTI5ZoYVolERlCil1nvGaLcmPTd_Ru78zhqnq22Cw6_SAbg6VohIY54q_KwVjgnKQIsrvr-Stm-PZXahiYJSznNKITjbIxLSCR1uNvu1jNBWF6vkN1e4N0X7bNpzrHpudfMk9guMt0MHozno9mDbsXcaUEnm2d9qE_VJvBz4BQFibUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230153411</pqid></control><display><type>article</type><title>Spectroscopic Identification of Ternary Cm−Carbonate Surface Complexes</title><source>MEDLINE</source><source>ACS Publications</source><creator>Fernandes, M. Marques ; Stumpf, T ; Baeyens, B ; Walther, C ; Bradbury, M. H</creator><creatorcontrib>Fernandes, M. Marques ; Stumpf, T ; Baeyens, B ; Walther, C ; Bradbury, M. H</creatorcontrib><description>The influence of dissolved CO2 on the sorption of trivalent curium (Cm) on alumina (γ-Al2O3) and kaolinite was investigated by time resolved laser fluorescence spectroscopy (TRLFS) using the optical properties of Cm as a local luminescent probe. Measurements were performed at T &lt; 20 K on Cm loaded γ-Al2O3 and kaolinite wet pastes prepared in the absence and presence of carbonate in order to pictorially illustrate any changes through a direct comparison of spectra from both systems. The red-shift of excitation and emission spectra, as well as the increase of fluorescence lifetimes observed in the samples with carbonate, clearly showed the influence of carbonate and was fully consistent with the formation of Cm(III) surface species involving carbonate complexes. In addition, the biexponential decay behavior of the fluorescence lifetime indicated that at least two different Cm(III)−carbonate species exist at the mineral−water interface. These results provide the first spectroscopic evidence for the formation of ternary Cm(III)−carbonate surface complexes.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es902175w</identifier><identifier>PMID: 20050656</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Alumina ; Aluminum Oxide ; Applied sciences ; Atmospheric pollution ; Carbon dioxide ; Carbonates - chemistry ; Chemical elements ; Curium - chemistry ; Environmental Processes ; Environmental science ; Exact sciences and technology ; Fluorescence ; Pollution ; Salt ; Spectrum Analysis ; Surface Properties</subject><ispartof>Environmental science &amp; technology, 2010-02, Vol.44 (3), p.921-927</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Feb 1, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a403t-df9fd9d30c179bafcbeb0d501e0417686408b05ee7c4e26a77d98e9c688a425b3</citedby><cites>FETCH-LOGICAL-a403t-df9fd9d30c179bafcbeb0d501e0417686408b05ee7c4e26a77d98e9c688a425b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es902175w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es902175w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22399742$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20050656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandes, M. Marques</creatorcontrib><creatorcontrib>Stumpf, T</creatorcontrib><creatorcontrib>Baeyens, B</creatorcontrib><creatorcontrib>Walther, C</creatorcontrib><creatorcontrib>Bradbury, M. H</creatorcontrib><title>Spectroscopic Identification of Ternary Cm−Carbonate Surface Complexes</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The influence of dissolved CO2 on the sorption of trivalent curium (Cm) on alumina (γ-Al2O3) and kaolinite was investigated by time resolved laser fluorescence spectroscopy (TRLFS) using the optical properties of Cm as a local luminescent probe. Measurements were performed at T &lt; 20 K on Cm loaded γ-Al2O3 and kaolinite wet pastes prepared in the absence and presence of carbonate in order to pictorially illustrate any changes through a direct comparison of spectra from both systems. The red-shift of excitation and emission spectra, as well as the increase of fluorescence lifetimes observed in the samples with carbonate, clearly showed the influence of carbonate and was fully consistent with the formation of Cm(III) surface species involving carbonate complexes. In addition, the biexponential decay behavior of the fluorescence lifetime indicated that at least two different Cm(III)−carbonate species exist at the mineral−water interface. These results provide the first spectroscopic evidence for the formation of ternary Cm(III)−carbonate surface complexes.</description><subject>Adsorption</subject><subject>Alumina</subject><subject>Aluminum Oxide</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Carbon dioxide</subject><subject>Carbonates - chemistry</subject><subject>Chemical elements</subject><subject>Curium - chemistry</subject><subject>Environmental Processes</subject><subject>Environmental science</subject><subject>Exact sciences and technology</subject><subject>Fluorescence</subject><subject>Pollution</subject><subject>Salt</subject><subject>Spectrum Analysis</subject><subject>Surface Properties</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1q3DAQB3BREprttoe-QDGFUHJwOrIsSzoW0yQLgRyygd6MLI_AwbZcySbNG-ScR-yTRGE3u5AccprLj_n4DyFfKZxSyOhPDCoWwe8-kAXlGaRccnpAFgCUpYoVf47IpxBuASBjID-SowyAQ8GLBbm4HtFM3gXjxtYkqwaHqbWt0VPrhsTZZI1-0P4-Kfv_D4-l9rUb9ITJ9eytNpiUrh87_IfhMzm0ugv4ZVuX5Obs97q8SC-vzlflr8tU58CmtLHKNqphYKhQtbamxhoaDhQhp6KQRQ6yBo4oTI5ZoYVolERlCil1nvGaLcmPTd_Ru78zhqnq22Cw6_SAbg6VohIY54q_KwVjgnKQIsrvr-Stm-PZXahiYJSznNKITjbIxLSCR1uNvu1jNBWF6vkN1e4N0X7bNpzrHpudfMk9guMt0MHozno9mDbsXcaUEnm2d9qE_VJvBz4BQFibUA</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Fernandes, M. Marques</creator><creator>Stumpf, T</creator><creator>Baeyens, B</creator><creator>Walther, C</creator><creator>Bradbury, M. H</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20100201</creationdate><title>Spectroscopic Identification of Ternary Cm−Carbonate Surface Complexes</title><author>Fernandes, M. Marques ; Stumpf, T ; Baeyens, B ; Walther, C ; Bradbury, M. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a403t-df9fd9d30c179bafcbeb0d501e0417686408b05ee7c4e26a77d98e9c688a425b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adsorption</topic><topic>Alumina</topic><topic>Aluminum Oxide</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Carbon dioxide</topic><topic>Carbonates - chemistry</topic><topic>Chemical elements</topic><topic>Curium - chemistry</topic><topic>Environmental Processes</topic><topic>Environmental science</topic><topic>Exact sciences and technology</topic><topic>Fluorescence</topic><topic>Pollution</topic><topic>Salt</topic><topic>Spectrum Analysis</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes, M. Marques</creatorcontrib><creatorcontrib>Stumpf, T</creatorcontrib><creatorcontrib>Baeyens, B</creatorcontrib><creatorcontrib>Walther, C</creatorcontrib><creatorcontrib>Bradbury, M. H</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandes, M. Marques</au><au>Stumpf, T</au><au>Baeyens, B</au><au>Walther, C</au><au>Bradbury, M. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectroscopic Identification of Ternary Cm−Carbonate Surface Complexes</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>44</volume><issue>3</issue><spage>921</spage><epage>927</epage><pages>921-927</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>The influence of dissolved CO2 on the sorption of trivalent curium (Cm) on alumina (γ-Al2O3) and kaolinite was investigated by time resolved laser fluorescence spectroscopy (TRLFS) using the optical properties of Cm as a local luminescent probe. Measurements were performed at T &lt; 20 K on Cm loaded γ-Al2O3 and kaolinite wet pastes prepared in the absence and presence of carbonate in order to pictorially illustrate any changes through a direct comparison of spectra from both systems. The red-shift of excitation and emission spectra, as well as the increase of fluorescence lifetimes observed in the samples with carbonate, clearly showed the influence of carbonate and was fully consistent with the formation of Cm(III) surface species involving carbonate complexes. In addition, the biexponential decay behavior of the fluorescence lifetime indicated that at least two different Cm(III)−carbonate species exist at the mineral−water interface. These results provide the first spectroscopic evidence for the formation of ternary Cm(III)−carbonate surface complexes.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20050656</pmid><doi>10.1021/es902175w</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2010-02, Vol.44 (3), p.921-927
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_918035595
source MEDLINE; ACS Publications
subjects Adsorption
Alumina
Aluminum Oxide
Applied sciences
Atmospheric pollution
Carbon dioxide
Carbonates - chemistry
Chemical elements
Curium - chemistry
Environmental Processes
Environmental science
Exact sciences and technology
Fluorescence
Pollution
Salt
Spectrum Analysis
Surface Properties
title Spectroscopic Identification of Ternary Cm−Carbonate Surface Complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectroscopic%20Identification%20of%20Ternary%20Cm%E2%88%92Carbonate%20Surface%20Complexes&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Fernandes,%20M.%20Marques&rft.date=2010-02-01&rft.volume=44&rft.issue=3&rft.spage=921&rft.epage=927&rft.pages=921-927&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es902175w&rft_dat=%3Cproquest_cross%3E733715087%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230153411&rft_id=info:pmid/20050656&rfr_iscdi=true