Atomic-scale transport in epitaxial graphene
A local atom probe has been used to study the transport properties of graphene, revealing the different effects of surface steps and changes in layer thickness on substrates. Understanding the details of the defect-induced degradation of transport properties is essential for improving the efficiency...
Gespeichert in:
Veröffentlicht in: | Nature materials 2011-11, Vol.11 (2), p.114-119 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | 2 |
container_start_page | 114 |
container_title | Nature materials |
container_volume | 11 |
creator | Ji, Shuai-Hua Hannon, J. B. Tromp, R. M. Perebeinos, V. Tersoff, J. Ross, F. M. |
description | A local atom probe has been used to study the transport properties of graphene, revealing the different effects of surface steps and changes in layer thickness on substrates. Understanding the details of the defect-induced degradation of transport properties is essential for improving the efficiency of devices.
The high carrier mobility of graphene
1
,
2
,
3
,
4
is key to its applications,and understanding the factors that limit mobility is essential for future devices. Yet, despite significant progress, mobilities in excess of the 2×10
5
cm
2
V
−1
s
−1
demonstrated in free-standing graphene films
5
,
6
have not been duplicated in conventional graphene devices fabricated on substrates. Understanding the origins of this degradation is perhaps the main challenge facing graphene device research. Experiments that probe carrier scattering in devices are often indirect
7
, relying on the predictions of a specific model for scattering, such as random charged impurities in the substrate
8
,
9
,
10
. Here, we describe model-independent, atomic-scale transport measurements that show that scattering at two key defects—surface steps and changes in layer thickness—seriously degrades transport in epitaxial graphene films on SiC. These measurements demonstrate the strong impact of atomic-scale substrate features on graphene performance. |
doi_str_mv | 10.1038/nmat3170 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_917855512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>917855512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-e91699b872974b168d1a50345a01bcb1864f9608241cd6ee0006ec32cd106633</originalsourceid><addsrcrecordid>eNpd0F1LwzAUBuAgiptV8BdIwQsVrJ6Tpml7OYZfMPBm9yVNz2ZHv0xS0H9vZJvIrhLIw3tyXsYuER4Q4uyxa5WLMYUjNkWRykhICce7OyLnE3Zm7QaAY5LIUzbhHAEzFFN2P3N9W-vIatVQ6Izq7NAbF9ZdSEPt1FetmnBt1PBBHZ2zk5VqLF3szoAtn5-W89do8f7yNp8tIi0QXEQ5yjwvs5TnqShRZhWqBGKRKMBSl5hJscolZFygriQRAEjSMdcVgpRxHLCbbexg-s-RrCva2mpqGtVRP9oixzRLkgS5l9cHctOPpvN_K_yCKAQXfnDAbrdKm95aQ6tiMHWrzLdHxW9_xb4_T692gWPZUvUH94V5cLcF1j91azL_Jx6E_QBy-nX9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011442450</pqid></control><display><type>article</type><title>Atomic-scale transport in epitaxial graphene</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Ji, Shuai-Hua ; Hannon, J. B. ; Tromp, R. M. ; Perebeinos, V. ; Tersoff, J. ; Ross, F. M.</creator><creatorcontrib>Ji, Shuai-Hua ; Hannon, J. B. ; Tromp, R. M. ; Perebeinos, V. ; Tersoff, J. ; Ross, F. M.</creatorcontrib><description>A local atom probe has been used to study the transport properties of graphene, revealing the different effects of surface steps and changes in layer thickness on substrates. Understanding the details of the defect-induced degradation of transport properties is essential for improving the efficiency of devices.
The high carrier mobility of graphene
1
,
2
,
3
,
4
is key to its applications,and understanding the factors that limit mobility is essential for future devices. Yet, despite significant progress, mobilities in excess of the 2×10
5
cm
2
V
−1
s
−1
demonstrated in free-standing graphene films
5
,
6
have not been duplicated in conventional graphene devices fabricated on substrates. Understanding the origins of this degradation is perhaps the main challenge facing graphene device research. Experiments that probe carrier scattering in devices are often indirect
7
, relying on the predictions of a specific model for scattering, such as random charged impurities in the substrate
8
,
9
,
10
. Here, we describe model-independent, atomic-scale transport measurements that show that scattering at two key defects—surface steps and changes in layer thickness—seriously degrades transport in epitaxial graphene films on SiC. These measurements demonstrate the strong impact of atomic-scale substrate features on graphene performance.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3170</identifier><identifier>PMID: 22101814</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/918 ; 639/301/357/918/1052 ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrical engineering ; letter ; Materials research ; Materials Science ; Nanomaterials ; Nanotechnology ; Optical and Electronic Materials ; Substrates</subject><ispartof>Nature materials, 2011-11, Vol.11 (2), p.114-119</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Feb 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-e91699b872974b168d1a50345a01bcb1864f9608241cd6ee0006ec32cd106633</citedby><cites>FETCH-LOGICAL-c410t-e91699b872974b168d1a50345a01bcb1864f9608241cd6ee0006ec32cd106633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat3170$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat3170$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22101814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Shuai-Hua</creatorcontrib><creatorcontrib>Hannon, J. B.</creatorcontrib><creatorcontrib>Tromp, R. M.</creatorcontrib><creatorcontrib>Perebeinos, V.</creatorcontrib><creatorcontrib>Tersoff, J.</creatorcontrib><creatorcontrib>Ross, F. M.</creatorcontrib><title>Atomic-scale transport in epitaxial graphene</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>A local atom probe has been used to study the transport properties of graphene, revealing the different effects of surface steps and changes in layer thickness on substrates. Understanding the details of the defect-induced degradation of transport properties is essential for improving the efficiency of devices.
The high carrier mobility of graphene
1
,
2
,
3
,
4
is key to its applications,and understanding the factors that limit mobility is essential for future devices. Yet, despite significant progress, mobilities in excess of the 2×10
5
cm
2
V
−1
s
−1
demonstrated in free-standing graphene films
5
,
6
have not been duplicated in conventional graphene devices fabricated on substrates. Understanding the origins of this degradation is perhaps the main challenge facing graphene device research. Experiments that probe carrier scattering in devices are often indirect
7
, relying on the predictions of a specific model for scattering, such as random charged impurities in the substrate
8
,
9
,
10
. Here, we describe model-independent, atomic-scale transport measurements that show that scattering at two key defects—surface steps and changes in layer thickness—seriously degrades transport in epitaxial graphene films on SiC. These measurements demonstrate the strong impact of atomic-scale substrate features on graphene performance.</description><subject>639/301/357/918</subject><subject>639/301/357/918/1052</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrical engineering</subject><subject>letter</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Substrates</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpd0F1LwzAUBuAgiptV8BdIwQsVrJ6Tpml7OYZfMPBm9yVNz2ZHv0xS0H9vZJvIrhLIw3tyXsYuER4Q4uyxa5WLMYUjNkWRykhICce7OyLnE3Zm7QaAY5LIUzbhHAEzFFN2P3N9W-vIatVQ6Izq7NAbF9ZdSEPt1FetmnBt1PBBHZ2zk5VqLF3szoAtn5-W89do8f7yNp8tIi0QXEQ5yjwvs5TnqShRZhWqBGKRKMBSl5hJscolZFygriQRAEjSMdcVgpRxHLCbbexg-s-RrCva2mpqGtVRP9oixzRLkgS5l9cHctOPpvN_K_yCKAQXfnDAbrdKm95aQ6tiMHWrzLdHxW9_xb4_T692gWPZUvUH94V5cLcF1j91azL_Jx6E_QBy-nX9</recordid><startdate>20111120</startdate><enddate>20111120</enddate><creator>Ji, Shuai-Hua</creator><creator>Hannon, J. B.</creator><creator>Tromp, R. M.</creator><creator>Perebeinos, V.</creator><creator>Tersoff, J.</creator><creator>Ross, F. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20111120</creationdate><title>Atomic-scale transport in epitaxial graphene</title><author>Ji, Shuai-Hua ; Hannon, J. B. ; Tromp, R. M. ; Perebeinos, V. ; Tersoff, J. ; Ross, F. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-e91699b872974b168d1a50345a01bcb1864f9608241cd6ee0006ec32cd106633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/301/357/918</topic><topic>639/301/357/918/1052</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrical engineering</topic><topic>letter</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Shuai-Hua</creatorcontrib><creatorcontrib>Hannon, J. B.</creatorcontrib><creatorcontrib>Tromp, R. M.</creatorcontrib><creatorcontrib>Perebeinos, V.</creatorcontrib><creatorcontrib>Tersoff, J.</creatorcontrib><creatorcontrib>Ross, F. M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Shuai-Hua</au><au>Hannon, J. B.</au><au>Tromp, R. M.</au><au>Perebeinos, V.</au><au>Tersoff, J.</au><au>Ross, F. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-scale transport in epitaxial graphene</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2011-11-20</date><risdate>2011</risdate><volume>11</volume><issue>2</issue><spage>114</spage><epage>119</epage><pages>114-119</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>A local atom probe has been used to study the transport properties of graphene, revealing the different effects of surface steps and changes in layer thickness on substrates. Understanding the details of the defect-induced degradation of transport properties is essential for improving the efficiency of devices.
The high carrier mobility of graphene
1
,
2
,
3
,
4
is key to its applications,and understanding the factors that limit mobility is essential for future devices. Yet, despite significant progress, mobilities in excess of the 2×10
5
cm
2
V
−1
s
−1
demonstrated in free-standing graphene films
5
,
6
have not been duplicated in conventional graphene devices fabricated on substrates. Understanding the origins of this degradation is perhaps the main challenge facing graphene device research. Experiments that probe carrier scattering in devices are often indirect
7
, relying on the predictions of a specific model for scattering, such as random charged impurities in the substrate
8
,
9
,
10
. Here, we describe model-independent, atomic-scale transport measurements that show that scattering at two key defects—surface steps and changes in layer thickness—seriously degrades transport in epitaxial graphene films on SiC. These measurements demonstrate the strong impact of atomic-scale substrate features on graphene performance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22101814</pmid><doi>10.1038/nmat3170</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2011-11, Vol.11 (2), p.114-119 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_917855512 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 639/301/357/918 639/301/357/918/1052 Biomaterials Chemistry and Materials Science Condensed Matter Physics Electrical engineering letter Materials research Materials Science Nanomaterials Nanotechnology Optical and Electronic Materials Substrates |
title | Atomic-scale transport in epitaxial graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A11%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-scale%20transport%20in%20epitaxial%20graphene&rft.jtitle=Nature%20materials&rft.au=Ji,%20Shuai-Hua&rft.date=2011-11-20&rft.volume=11&rft.issue=2&rft.spage=114&rft.epage=119&rft.pages=114-119&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3170&rft_dat=%3Cproquest_cross%3E917855512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011442450&rft_id=info:pmid/22101814&rfr_iscdi=true |