Atomic-scale transport in epitaxial graphene

A local atom probe has been used to study the transport properties of graphene, revealing the different effects of surface steps and changes in layer thickness on substrates. Understanding the details of the defect-induced degradation of transport properties is essential for improving the efficiency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2011-11, Vol.11 (2), p.114-119
Hauptverfasser: Ji, Shuai-Hua, Hannon, J. B., Tromp, R. M., Perebeinos, V., Tersoff, J., Ross, F. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 2
container_start_page 114
container_title Nature materials
container_volume 11
creator Ji, Shuai-Hua
Hannon, J. B.
Tromp, R. M.
Perebeinos, V.
Tersoff, J.
Ross, F. M.
description A local atom probe has been used to study the transport properties of graphene, revealing the different effects of surface steps and changes in layer thickness on substrates. Understanding the details of the defect-induced degradation of transport properties is essential for improving the efficiency of devices. The high carrier mobility of graphene 1 , 2 , 3 , 4 is key to its applications,and understanding the factors that limit mobility is essential for future devices. Yet, despite significant progress, mobilities in excess of the 2×10 5  cm 2  V −1  s −1 demonstrated in free-standing graphene films 5 , 6 have not been duplicated in conventional graphene devices fabricated on substrates. Understanding the origins of this degradation is perhaps the main challenge facing graphene device research. Experiments that probe carrier scattering in devices are often indirect 7 , relying on the predictions of a specific model for scattering, such as random charged impurities in the substrate 8 , 9 , 10 . Here, we describe model-independent, atomic-scale transport measurements that show that scattering at two key defects—surface steps and changes in layer thickness—seriously degrades transport in epitaxial graphene films on SiC. These measurements demonstrate the strong impact of atomic-scale substrate features on graphene performance.
doi_str_mv 10.1038/nmat3170
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_917855512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>917855512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-e91699b872974b168d1a50345a01bcb1864f9608241cd6ee0006ec32cd106633</originalsourceid><addsrcrecordid>eNpd0F1LwzAUBuAgiptV8BdIwQsVrJ6Tpml7OYZfMPBm9yVNz2ZHv0xS0H9vZJvIrhLIw3tyXsYuER4Q4uyxa5WLMYUjNkWRykhICce7OyLnE3Zm7QaAY5LIUzbhHAEzFFN2P3N9W-vIatVQ6Izq7NAbF9ZdSEPt1FetmnBt1PBBHZ2zk5VqLF3szoAtn5-W89do8f7yNp8tIi0QXEQ5yjwvs5TnqShRZhWqBGKRKMBSl5hJscolZFygriQRAEjSMdcVgpRxHLCbbexg-s-RrCva2mpqGtVRP9oixzRLkgS5l9cHctOPpvN_K_yCKAQXfnDAbrdKm95aQ6tiMHWrzLdHxW9_xb4_T692gWPZUvUH94V5cLcF1j91azL_Jx6E_QBy-nX9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011442450</pqid></control><display><type>article</type><title>Atomic-scale transport in epitaxial graphene</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Ji, Shuai-Hua ; Hannon, J. B. ; Tromp, R. M. ; Perebeinos, V. ; Tersoff, J. ; Ross, F. M.</creator><creatorcontrib>Ji, Shuai-Hua ; Hannon, J. B. ; Tromp, R. M. ; Perebeinos, V. ; Tersoff, J. ; Ross, F. M.</creatorcontrib><description>A local atom probe has been used to study the transport properties of graphene, revealing the different effects of surface steps and changes in layer thickness on substrates. Understanding the details of the defect-induced degradation of transport properties is essential for improving the efficiency of devices. The high carrier mobility of graphene 1 , 2 , 3 , 4 is key to its applications,and understanding the factors that limit mobility is essential for future devices. Yet, despite significant progress, mobilities in excess of the 2×10 5  cm 2  V −1  s −1 demonstrated in free-standing graphene films 5 , 6 have not been duplicated in conventional graphene devices fabricated on substrates. Understanding the origins of this degradation is perhaps the main challenge facing graphene device research. Experiments that probe carrier scattering in devices are often indirect 7 , relying on the predictions of a specific model for scattering, such as random charged impurities in the substrate 8 , 9 , 10 . Here, we describe model-independent, atomic-scale transport measurements that show that scattering at two key defects—surface steps and changes in layer thickness—seriously degrades transport in epitaxial graphene films on SiC. These measurements demonstrate the strong impact of atomic-scale substrate features on graphene performance.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3170</identifier><identifier>PMID: 22101814</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/918 ; 639/301/357/918/1052 ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrical engineering ; letter ; Materials research ; Materials Science ; Nanomaterials ; Nanotechnology ; Optical and Electronic Materials ; Substrates</subject><ispartof>Nature materials, 2011-11, Vol.11 (2), p.114-119</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Feb 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-e91699b872974b168d1a50345a01bcb1864f9608241cd6ee0006ec32cd106633</citedby><cites>FETCH-LOGICAL-c410t-e91699b872974b168d1a50345a01bcb1864f9608241cd6ee0006ec32cd106633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat3170$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat3170$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22101814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Shuai-Hua</creatorcontrib><creatorcontrib>Hannon, J. B.</creatorcontrib><creatorcontrib>Tromp, R. M.</creatorcontrib><creatorcontrib>Perebeinos, V.</creatorcontrib><creatorcontrib>Tersoff, J.</creatorcontrib><creatorcontrib>Ross, F. M.</creatorcontrib><title>Atomic-scale transport in epitaxial graphene</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>A local atom probe has been used to study the transport properties of graphene, revealing the different effects of surface steps and changes in layer thickness on substrates. Understanding the details of the defect-induced degradation of transport properties is essential for improving the efficiency of devices. The high carrier mobility of graphene 1 , 2 , 3 , 4 is key to its applications,and understanding the factors that limit mobility is essential for future devices. Yet, despite significant progress, mobilities in excess of the 2×10 5  cm 2  V −1  s −1 demonstrated in free-standing graphene films 5 , 6 have not been duplicated in conventional graphene devices fabricated on substrates. Understanding the origins of this degradation is perhaps the main challenge facing graphene device research. Experiments that probe carrier scattering in devices are often indirect 7 , relying on the predictions of a specific model for scattering, such as random charged impurities in the substrate 8 , 9 , 10 . Here, we describe model-independent, atomic-scale transport measurements that show that scattering at two key defects—surface steps and changes in layer thickness—seriously degrades transport in epitaxial graphene films on SiC. These measurements demonstrate the strong impact of atomic-scale substrate features on graphene performance.</description><subject>639/301/357/918</subject><subject>639/301/357/918/1052</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrical engineering</subject><subject>letter</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Substrates</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpd0F1LwzAUBuAgiptV8BdIwQsVrJ6Tpml7OYZfMPBm9yVNz2ZHv0xS0H9vZJvIrhLIw3tyXsYuER4Q4uyxa5WLMYUjNkWRykhICce7OyLnE3Zm7QaAY5LIUzbhHAEzFFN2P3N9W-vIatVQ6Izq7NAbF9ZdSEPt1FetmnBt1PBBHZ2zk5VqLF3szoAtn5-W89do8f7yNp8tIi0QXEQ5yjwvs5TnqShRZhWqBGKRKMBSl5hJscolZFygriQRAEjSMdcVgpRxHLCbbexg-s-RrCva2mpqGtVRP9oixzRLkgS5l9cHctOPpvN_K_yCKAQXfnDAbrdKm95aQ6tiMHWrzLdHxW9_xb4_T692gWPZUvUH94V5cLcF1j91azL_Jx6E_QBy-nX9</recordid><startdate>20111120</startdate><enddate>20111120</enddate><creator>Ji, Shuai-Hua</creator><creator>Hannon, J. B.</creator><creator>Tromp, R. M.</creator><creator>Perebeinos, V.</creator><creator>Tersoff, J.</creator><creator>Ross, F. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20111120</creationdate><title>Atomic-scale transport in epitaxial graphene</title><author>Ji, Shuai-Hua ; Hannon, J. B. ; Tromp, R. M. ; Perebeinos, V. ; Tersoff, J. ; Ross, F. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-e91699b872974b168d1a50345a01bcb1864f9608241cd6ee0006ec32cd106633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/301/357/918</topic><topic>639/301/357/918/1052</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrical engineering</topic><topic>letter</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Shuai-Hua</creatorcontrib><creatorcontrib>Hannon, J. B.</creatorcontrib><creatorcontrib>Tromp, R. M.</creatorcontrib><creatorcontrib>Perebeinos, V.</creatorcontrib><creatorcontrib>Tersoff, J.</creatorcontrib><creatorcontrib>Ross, F. M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Shuai-Hua</au><au>Hannon, J. B.</au><au>Tromp, R. M.</au><au>Perebeinos, V.</au><au>Tersoff, J.</au><au>Ross, F. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-scale transport in epitaxial graphene</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2011-11-20</date><risdate>2011</risdate><volume>11</volume><issue>2</issue><spage>114</spage><epage>119</epage><pages>114-119</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>A local atom probe has been used to study the transport properties of graphene, revealing the different effects of surface steps and changes in layer thickness on substrates. Understanding the details of the defect-induced degradation of transport properties is essential for improving the efficiency of devices. The high carrier mobility of graphene 1 , 2 , 3 , 4 is key to its applications,and understanding the factors that limit mobility is essential for future devices. Yet, despite significant progress, mobilities in excess of the 2×10 5  cm 2  V −1  s −1 demonstrated in free-standing graphene films 5 , 6 have not been duplicated in conventional graphene devices fabricated on substrates. Understanding the origins of this degradation is perhaps the main challenge facing graphene device research. Experiments that probe carrier scattering in devices are often indirect 7 , relying on the predictions of a specific model for scattering, such as random charged impurities in the substrate 8 , 9 , 10 . Here, we describe model-independent, atomic-scale transport measurements that show that scattering at two key defects—surface steps and changes in layer thickness—seriously degrades transport in epitaxial graphene films on SiC. These measurements demonstrate the strong impact of atomic-scale substrate features on graphene performance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22101814</pmid><doi>10.1038/nmat3170</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2011-11, Vol.11 (2), p.114-119
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_917855512
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/301/357/918
639/301/357/918/1052
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Electrical engineering
letter
Materials research
Materials Science
Nanomaterials
Nanotechnology
Optical and Electronic Materials
Substrates
title Atomic-scale transport in epitaxial graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A11%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-scale%20transport%20in%20epitaxial%20graphene&rft.jtitle=Nature%20materials&rft.au=Ji,%20Shuai-Hua&rft.date=2011-11-20&rft.volume=11&rft.issue=2&rft.spage=114&rft.epage=119&rft.pages=114-119&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3170&rft_dat=%3Cproquest_cross%3E917855512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011442450&rft_id=info:pmid/22101814&rfr_iscdi=true