Criticality of the Geological Copper Family
Because modern technology depends on reliable supplies of a wide variety of materials, and because of increasing concern about those supplies, a comprehensive methodology has been created to quantify the degree of criticality of the metals of the periodic table. In this paper, we apply this methodol...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2012-01, Vol.46 (2), p.1071-1078 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1078 |
---|---|
container_issue | 2 |
container_start_page | 1071 |
container_title | Environmental science & technology |
container_volume | 46 |
creator | Nassar, Nedal T Barr, Rachel Browning, Matthew Diao, Zhouwei Friedlander, Elizabeth Harper, E. M Henly, Claire Kavlak, Goksin Kwatra, Sameer Jun, Christine Warren, Simon Yang, Man-Yu Graedel, T. E |
description | Because modern technology depends on reliable supplies of a wide variety of materials, and because of increasing concern about those supplies, a comprehensive methodology has been created to quantify the degree of criticality of the metals of the periodic table. In this paper, we apply this methodology to the elements of the geological copper family: Cu, As, Se, Ag, Te, and Au. These elements are technologically important, but show a substantial variation in different factors relating to their supply risk, vulnerability to supply restriction, and environmental implications. Assessments are made on corporate, national, and global levels for year 2008. Evaluations of each of the multiple indicators are presented and the results plotted in “criticality space”, together with Monte Carlo simulation-derived “uncertainty cloud” estimates for each of the aggregated evaluations. For supply risk over both the medium term and long term, As is the highest risk of the six metals, with Se and Ag nearly as high. Gold has the most severe environmental implications ranking. Vulnerability to supply restriction (VSR) at the corporate level for an invented solar cell manufacturing firm shows Se, Te, and Cu as approximately equal, Cu has the highest VSR at the national level, and Cu and Au have the highest VSRs at the global level. Criticality vector magnitudes are greatest at the global level for As (and then Au and Ag) and at the national level for As and Au; at the corporate level, Se is highest with Te and Cu lower. An extension of this work, now in progress, will provide criticality estimates for several different development scenarios for the period 2010–2050. |
doi_str_mv | 10.1021/es203535w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_917160867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>917160867</sourcerecordid><originalsourceid>FETCH-LOGICAL-a437t-7fcb2c03b1f04949b55e4cbafd33d79425a5da99bc1c19a24473374dfb51340e3</originalsourceid><addsrcrecordid>eNpl0F1LwzAUBuAgipvTC_-AFEFEpHry1TaXUtwUBt4oeFfSNNGOdqlJi-zfm7G5gV4dODy85_AidI7hDgPB99oToJzy7wM0xpxAzDOOD9EYANNY0OR9hE68XwAAoZAdoxEhWBBgYoxuc1f3tZJN3a8ia6L-U0czbRv7sV5Gue067aKpbOtmdYqOjGy8PtvOCXqbPr7mT_H8ZfacP8xjyWjax6lRJVFAS2zCCSZKzjVTpTQVpVUqGOGSV1KIUmGFhSSMpZSmrDIlx5SBphN0vcntnP0atO-LtvZKN41cajv4QuAUJ5AlaZCXf-TCDm4ZngsoERljRAR0s0HKWe-dNkXn6la6VYGhWPdX7PoL9mIbOJStrnbyt7AArrZA-lCQcXKpar93nGVEELx3Uvn9U_8P_gCI4oE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916984429</pqid></control><display><type>article</type><title>Criticality of the Geological Copper Family</title><source>MEDLINE</source><source>ACS Journals: American Chemical Society Web Editions</source><creator>Nassar, Nedal T ; Barr, Rachel ; Browning, Matthew ; Diao, Zhouwei ; Friedlander, Elizabeth ; Harper, E. M ; Henly, Claire ; Kavlak, Goksin ; Kwatra, Sameer ; Jun, Christine ; Warren, Simon ; Yang, Man-Yu ; Graedel, T. E</creator><creatorcontrib>Nassar, Nedal T ; Barr, Rachel ; Browning, Matthew ; Diao, Zhouwei ; Friedlander, Elizabeth ; Harper, E. M ; Henly, Claire ; Kavlak, Goksin ; Kwatra, Sameer ; Jun, Christine ; Warren, Simon ; Yang, Man-Yu ; Graedel, T. E</creatorcontrib><description>Because modern technology depends on reliable supplies of a wide variety of materials, and because of increasing concern about those supplies, a comprehensive methodology has been created to quantify the degree of criticality of the metals of the periodic table. In this paper, we apply this methodology to the elements of the geological copper family: Cu, As, Se, Ag, Te, and Au. These elements are technologically important, but show a substantial variation in different factors relating to their supply risk, vulnerability to supply restriction, and environmental implications. Assessments are made on corporate, national, and global levels for year 2008. Evaluations of each of the multiple indicators are presented and the results plotted in “criticality space”, together with Monte Carlo simulation-derived “uncertainty cloud” estimates for each of the aggregated evaluations. For supply risk over both the medium term and long term, As is the highest risk of the six metals, with Se and Ag nearly as high. Gold has the most severe environmental implications ranking. Vulnerability to supply restriction (VSR) at the corporate level for an invented solar cell manufacturing firm shows Se, Te, and Cu as approximately equal, Cu has the highest VSR at the national level, and Cu and Au have the highest VSRs at the global level. Criticality vector magnitudes are greatest at the global level for As (and then Au and Ag) and at the national level for As and Au; at the corporate level, Se is highest with Te and Cu lower. An extension of this work, now in progress, will provide criticality estimates for several different development scenarios for the period 2010–2050.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es203535w</identifier><identifier>PMID: 22192049</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Arsenic - supply & distribution ; Copper ; Copper - classification ; Copper - economics ; Copper - supply & distribution ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Geology ; Industry - economics ; Industry - methods ; Marine and continental quaternary ; Models, Theoretical ; Monte Carlo simulation ; Pollution, environment geology ; Selenium - supply & distribution ; Surficial geology ; Tellurium - supply & distribution ; Trace elements</subject><ispartof>Environmental science & technology, 2012-01, Vol.46 (2), p.1071-1078</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><rights>Copyright American Chemical Society Jan 17, 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a437t-7fcb2c03b1f04949b55e4cbafd33d79425a5da99bc1c19a24473374dfb51340e3</citedby><cites>FETCH-LOGICAL-a437t-7fcb2c03b1f04949b55e4cbafd33d79425a5da99bc1c19a24473374dfb51340e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es203535w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es203535w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2769,27085,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25482921$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22192049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nassar, Nedal T</creatorcontrib><creatorcontrib>Barr, Rachel</creatorcontrib><creatorcontrib>Browning, Matthew</creatorcontrib><creatorcontrib>Diao, Zhouwei</creatorcontrib><creatorcontrib>Friedlander, Elizabeth</creatorcontrib><creatorcontrib>Harper, E. M</creatorcontrib><creatorcontrib>Henly, Claire</creatorcontrib><creatorcontrib>Kavlak, Goksin</creatorcontrib><creatorcontrib>Kwatra, Sameer</creatorcontrib><creatorcontrib>Jun, Christine</creatorcontrib><creatorcontrib>Warren, Simon</creatorcontrib><creatorcontrib>Yang, Man-Yu</creatorcontrib><creatorcontrib>Graedel, T. E</creatorcontrib><title>Criticality of the Geological Copper Family</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Because modern technology depends on reliable supplies of a wide variety of materials, and because of increasing concern about those supplies, a comprehensive methodology has been created to quantify the degree of criticality of the metals of the periodic table. In this paper, we apply this methodology to the elements of the geological copper family: Cu, As, Se, Ag, Te, and Au. These elements are technologically important, but show a substantial variation in different factors relating to their supply risk, vulnerability to supply restriction, and environmental implications. Assessments are made on corporate, national, and global levels for year 2008. Evaluations of each of the multiple indicators are presented and the results plotted in “criticality space”, together with Monte Carlo simulation-derived “uncertainty cloud” estimates for each of the aggregated evaluations. For supply risk over both the medium term and long term, As is the highest risk of the six metals, with Se and Ag nearly as high. Gold has the most severe environmental implications ranking. Vulnerability to supply restriction (VSR) at the corporate level for an invented solar cell manufacturing firm shows Se, Te, and Cu as approximately equal, Cu has the highest VSR at the national level, and Cu and Au have the highest VSRs at the global level. Criticality vector magnitudes are greatest at the global level for As (and then Au and Ag) and at the national level for As and Au; at the corporate level, Se is highest with Te and Cu lower. An extension of this work, now in progress, will provide criticality estimates for several different development scenarios for the period 2010–2050.</description><subject>Arsenic - supply & distribution</subject><subject>Copper</subject><subject>Copper - classification</subject><subject>Copper - economics</subject><subject>Copper - supply & distribution</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Geology</subject><subject>Industry - economics</subject><subject>Industry - methods</subject><subject>Marine and continental quaternary</subject><subject>Models, Theoretical</subject><subject>Monte Carlo simulation</subject><subject>Pollution, environment geology</subject><subject>Selenium - supply & distribution</subject><subject>Surficial geology</subject><subject>Tellurium - supply & distribution</subject><subject>Trace elements</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0F1LwzAUBuAgipvTC_-AFEFEpHry1TaXUtwUBt4oeFfSNNGOdqlJi-zfm7G5gV4dODy85_AidI7hDgPB99oToJzy7wM0xpxAzDOOD9EYANNY0OR9hE68XwAAoZAdoxEhWBBgYoxuc1f3tZJN3a8ia6L-U0czbRv7sV5Gue067aKpbOtmdYqOjGy8PtvOCXqbPr7mT_H8ZfacP8xjyWjax6lRJVFAS2zCCSZKzjVTpTQVpVUqGOGSV1KIUmGFhSSMpZSmrDIlx5SBphN0vcntnP0atO-LtvZKN41cajv4QuAUJ5AlaZCXf-TCDm4ZngsoERljRAR0s0HKWe-dNkXn6la6VYGhWPdX7PoL9mIbOJStrnbyt7AArrZA-lCQcXKpar93nGVEELx3Uvn9U_8P_gCI4oE0</recordid><startdate>20120117</startdate><enddate>20120117</enddate><creator>Nassar, Nedal T</creator><creator>Barr, Rachel</creator><creator>Browning, Matthew</creator><creator>Diao, Zhouwei</creator><creator>Friedlander, Elizabeth</creator><creator>Harper, E. M</creator><creator>Henly, Claire</creator><creator>Kavlak, Goksin</creator><creator>Kwatra, Sameer</creator><creator>Jun, Christine</creator><creator>Warren, Simon</creator><creator>Yang, Man-Yu</creator><creator>Graedel, T. E</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20120117</creationdate><title>Criticality of the Geological Copper Family</title><author>Nassar, Nedal T ; Barr, Rachel ; Browning, Matthew ; Diao, Zhouwei ; Friedlander, Elizabeth ; Harper, E. M ; Henly, Claire ; Kavlak, Goksin ; Kwatra, Sameer ; Jun, Christine ; Warren, Simon ; Yang, Man-Yu ; Graedel, T. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a437t-7fcb2c03b1f04949b55e4cbafd33d79425a5da99bc1c19a24473374dfb51340e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arsenic - supply & distribution</topic><topic>Copper</topic><topic>Copper - classification</topic><topic>Copper - economics</topic><topic>Copper - supply & distribution</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Geology</topic><topic>Industry - economics</topic><topic>Industry - methods</topic><topic>Marine and continental quaternary</topic><topic>Models, Theoretical</topic><topic>Monte Carlo simulation</topic><topic>Pollution, environment geology</topic><topic>Selenium - supply & distribution</topic><topic>Surficial geology</topic><topic>Tellurium - supply & distribution</topic><topic>Trace elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nassar, Nedal T</creatorcontrib><creatorcontrib>Barr, Rachel</creatorcontrib><creatorcontrib>Browning, Matthew</creatorcontrib><creatorcontrib>Diao, Zhouwei</creatorcontrib><creatorcontrib>Friedlander, Elizabeth</creatorcontrib><creatorcontrib>Harper, E. M</creatorcontrib><creatorcontrib>Henly, Claire</creatorcontrib><creatorcontrib>Kavlak, Goksin</creatorcontrib><creatorcontrib>Kwatra, Sameer</creatorcontrib><creatorcontrib>Jun, Christine</creatorcontrib><creatorcontrib>Warren, Simon</creatorcontrib><creatorcontrib>Yang, Man-Yu</creatorcontrib><creatorcontrib>Graedel, T. E</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nassar, Nedal T</au><au>Barr, Rachel</au><au>Browning, Matthew</au><au>Diao, Zhouwei</au><au>Friedlander, Elizabeth</au><au>Harper, E. M</au><au>Henly, Claire</au><au>Kavlak, Goksin</au><au>Kwatra, Sameer</au><au>Jun, Christine</au><au>Warren, Simon</au><au>Yang, Man-Yu</au><au>Graedel, T. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Criticality of the Geological Copper Family</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2012-01-17</date><risdate>2012</risdate><volume>46</volume><issue>2</issue><spage>1071</spage><epage>1078</epage><pages>1071-1078</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Because modern technology depends on reliable supplies of a wide variety of materials, and because of increasing concern about those supplies, a comprehensive methodology has been created to quantify the degree of criticality of the metals of the periodic table. In this paper, we apply this methodology to the elements of the geological copper family: Cu, As, Se, Ag, Te, and Au. These elements are technologically important, but show a substantial variation in different factors relating to their supply risk, vulnerability to supply restriction, and environmental implications. Assessments are made on corporate, national, and global levels for year 2008. Evaluations of each of the multiple indicators are presented and the results plotted in “criticality space”, together with Monte Carlo simulation-derived “uncertainty cloud” estimates for each of the aggregated evaluations. For supply risk over both the medium term and long term, As is the highest risk of the six metals, with Se and Ag nearly as high. Gold has the most severe environmental implications ranking. Vulnerability to supply restriction (VSR) at the corporate level for an invented solar cell manufacturing firm shows Se, Te, and Cu as approximately equal, Cu has the highest VSR at the national level, and Cu and Au have the highest VSRs at the global level. Criticality vector magnitudes are greatest at the global level for As (and then Au and Ag) and at the national level for As and Au; at the corporate level, Se is highest with Te and Cu lower. An extension of this work, now in progress, will provide criticality estimates for several different development scenarios for the period 2010–2050.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22192049</pmid><doi>10.1021/es203535w</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2012-01, Vol.46 (2), p.1071-1078 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_917160867 |
source | MEDLINE; ACS Journals: American Chemical Society Web Editions |
subjects | Arsenic - supply & distribution Copper Copper - classification Copper - economics Copper - supply & distribution Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Exact sciences and technology Geology Industry - economics Industry - methods Marine and continental quaternary Models, Theoretical Monte Carlo simulation Pollution, environment geology Selenium - supply & distribution Surficial geology Tellurium - supply & distribution Trace elements |
title | Criticality of the Geological Copper Family |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T14%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Criticality%20of%20the%20Geological%20Copper%20Family&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Nassar,%20Nedal%20T&rft.date=2012-01-17&rft.volume=46&rft.issue=2&rft.spage=1071&rft.epage=1078&rft.pages=1071-1078&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es203535w&rft_dat=%3Cproquest_cross%3E917160867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916984429&rft_id=info:pmid/22192049&rfr_iscdi=true |