Dispersive optical interface based on nanofiber-trapped atoms

We dispersively interface an ensemble of 1000 atoms trapped in the evanescent field surrounding a tapered optical nanofiber. This method relies on the azimuthally asymmetric coupling of the ensemble with the evanescent field of an off-resonant probe beam, transmitted through the nanofiber. The resul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2011-12, Vol.107 (24), p.243601-243601, Article 243601
Hauptverfasser: Dawkins, S T, Mitsch, R, Reitz, D, Vetsch, E, Rauschenbeutel, A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 243601
container_issue 24
container_start_page 243601
container_title Physical review letters
container_volume 107
creator Dawkins, S T
Mitsch, R
Reitz, D
Vetsch, E
Rauschenbeutel, A
description We dispersively interface an ensemble of 1000 atoms trapped in the evanescent field surrounding a tapered optical nanofiber. This method relies on the azimuthally asymmetric coupling of the ensemble with the evanescent field of an off-resonant probe beam, transmitted through the nanofiber. The resulting birefringence and dispersion are significant; we observe a phase shift per atom of ∼1  mrad at a detuning of 6 times the natural linewidth, corresponding to an effective resonant optical density per atom of 0.027. Moreover, we utilize this strong dispersion to nondestructively determine the number of atoms.
doi_str_mv 10.1103/physrevlett.107.243601
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_916522431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>916522431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-a9801c1b5396fb18c5c8393aeb9300b68a1d984931cf0451d65a5157c9d49d123</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EoqXwF6rcOKXs2okTHzgg3lIlEIJzZDsbEZQXtlup_x6jFk6rHc3saj7GlggrRBBX0-fOO9p2FMIKoVjxTEjAIzaPi0oLxOyYzQEEpgqgmLEz778AALksT9mMc55xpdScXd-1fiLn2y0l4xRaq7ukHQK5RltKjPZUJ-OQDHoYm9aQS4PT0xRFHcben7OTRneeLg5zwT4e7t9vn9L1y-Pz7c06taKQIdWqBLRocqFkY7C0uS2FEpqMEgBGlhprVWZKoG0gy7GWuc4xL6yqM1UjFwt2ub87ufF7Qz5UfestdZ0eaNz4SqHMYyWB0Sn3TutGHwk11eTaXrtdhVD9kqteI7k32q4juagV1Z5cDC4PLzamp_o_9odK_ABjmWyZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916522431</pqid></control><display><type>article</type><title>Dispersive optical interface based on nanofiber-trapped atoms</title><source>American Physical Society Journals</source><creator>Dawkins, S T ; Mitsch, R ; Reitz, D ; Vetsch, E ; Rauschenbeutel, A</creator><creatorcontrib>Dawkins, S T ; Mitsch, R ; Reitz, D ; Vetsch, E ; Rauschenbeutel, A</creatorcontrib><description>We dispersively interface an ensemble of 1000 atoms trapped in the evanescent field surrounding a tapered optical nanofiber. This method relies on the azimuthally asymmetric coupling of the ensemble with the evanescent field of an off-resonant probe beam, transmitted through the nanofiber. The resulting birefringence and dispersion are significant; we observe a phase shift per atom of ∼1  mrad at a detuning of 6 times the natural linewidth, corresponding to an effective resonant optical density per atom of 0.027. Moreover, we utilize this strong dispersion to nondestructively determine the number of atoms.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.107.243601</identifier><identifier>PMID: 22242999</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2011-12, Vol.107 (24), p.243601-243601, Article 243601</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-a9801c1b5396fb18c5c8393aeb9300b68a1d984931cf0451d65a5157c9d49d123</citedby><cites>FETCH-LOGICAL-c376t-a9801c1b5396fb18c5c8393aeb9300b68a1d984931cf0451d65a5157c9d49d123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22242999$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dawkins, S T</creatorcontrib><creatorcontrib>Mitsch, R</creatorcontrib><creatorcontrib>Reitz, D</creatorcontrib><creatorcontrib>Vetsch, E</creatorcontrib><creatorcontrib>Rauschenbeutel, A</creatorcontrib><title>Dispersive optical interface based on nanofiber-trapped atoms</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We dispersively interface an ensemble of 1000 atoms trapped in the evanescent field surrounding a tapered optical nanofiber. This method relies on the azimuthally asymmetric coupling of the ensemble with the evanescent field of an off-resonant probe beam, transmitted through the nanofiber. The resulting birefringence and dispersion are significant; we observe a phase shift per atom of ∼1  mrad at a detuning of 6 times the natural linewidth, corresponding to an effective resonant optical density per atom of 0.027. Moreover, we utilize this strong dispersion to nondestructively determine the number of atoms.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EoqXwF6rcOKXs2okTHzgg3lIlEIJzZDsbEZQXtlup_x6jFk6rHc3saj7GlggrRBBX0-fOO9p2FMIKoVjxTEjAIzaPi0oLxOyYzQEEpgqgmLEz778AALksT9mMc55xpdScXd-1fiLn2y0l4xRaq7ukHQK5RltKjPZUJ-OQDHoYm9aQS4PT0xRFHcben7OTRneeLg5zwT4e7t9vn9L1y-Pz7c06taKQIdWqBLRocqFkY7C0uS2FEpqMEgBGlhprVWZKoG0gy7GWuc4xL6yqM1UjFwt2ub87ufF7Qz5UfestdZ0eaNz4SqHMYyWB0Sn3TutGHwk11eTaXrtdhVD9kqteI7k32q4juagV1Z5cDC4PLzamp_o_9odK_ABjmWyZ</recordid><startdate>20111207</startdate><enddate>20111207</enddate><creator>Dawkins, S T</creator><creator>Mitsch, R</creator><creator>Reitz, D</creator><creator>Vetsch, E</creator><creator>Rauschenbeutel, A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20111207</creationdate><title>Dispersive optical interface based on nanofiber-trapped atoms</title><author>Dawkins, S T ; Mitsch, R ; Reitz, D ; Vetsch, E ; Rauschenbeutel, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-a9801c1b5396fb18c5c8393aeb9300b68a1d984931cf0451d65a5157c9d49d123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dawkins, S T</creatorcontrib><creatorcontrib>Mitsch, R</creatorcontrib><creatorcontrib>Reitz, D</creatorcontrib><creatorcontrib>Vetsch, E</creatorcontrib><creatorcontrib>Rauschenbeutel, A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawkins, S T</au><au>Mitsch, R</au><au>Reitz, D</au><au>Vetsch, E</au><au>Rauschenbeutel, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dispersive optical interface based on nanofiber-trapped atoms</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2011-12-07</date><risdate>2011</risdate><volume>107</volume><issue>24</issue><spage>243601</spage><epage>243601</epage><pages>243601-243601</pages><artnum>243601</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We dispersively interface an ensemble of 1000 atoms trapped in the evanescent field surrounding a tapered optical nanofiber. This method relies on the azimuthally asymmetric coupling of the ensemble with the evanescent field of an off-resonant probe beam, transmitted through the nanofiber. The resulting birefringence and dispersion are significant; we observe a phase shift per atom of ∼1  mrad at a detuning of 6 times the natural linewidth, corresponding to an effective resonant optical density per atom of 0.027. Moreover, we utilize this strong dispersion to nondestructively determine the number of atoms.</abstract><cop>United States</cop><pmid>22242999</pmid><doi>10.1103/physrevlett.107.243601</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2011-12, Vol.107 (24), p.243601-243601, Article 243601
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_916522431
source American Physical Society Journals
title Dispersive optical interface based on nanofiber-trapped atoms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dispersive%20optical%20interface%20based%20on%20nanofiber-trapped%20atoms&rft.jtitle=Physical%20review%20letters&rft.au=Dawkins,%20S%20T&rft.date=2011-12-07&rft.volume=107&rft.issue=24&rft.spage=243601&rft.epage=243601&rft.pages=243601-243601&rft.artnum=243601&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.107.243601&rft_dat=%3Cproquest_cross%3E916522431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916522431&rft_id=info:pmid/22242999&rfr_iscdi=true