Persistent enhancement of functional MRI responsiveness to sensory stimulation following repeated seizures

Summary Purpose:  Neural reorganization and interictal behavioral anomalies have been documented in people with epilepsy and in animal seizure models. Alterations in behavior could be due to somatosensory dysfunction. This study was designed to determine whether seizures can lead to changes in somat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Epilepsia (Copenhagen) 2011-12, Vol.52 (12), p.2285-2292
Hauptverfasser: Vuong, Jennifer, Henderson, Amy K., Tuor, Ursula I., Dunn, Jeff F., Teskey, G. Campbell
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2292
container_issue 12
container_start_page 2285
container_title Epilepsia (Copenhagen)
container_volume 52
creator Vuong, Jennifer
Henderson, Amy K.
Tuor, Ursula I.
Dunn, Jeff F.
Teskey, G. Campbell
description Summary Purpose:  Neural reorganization and interictal behavioral anomalies have been documented in people with epilepsy and in animal seizure models. Alterations in behavior could be due to somatosensory dysfunction. This study was designed to determine whether seizures can lead to changes in somatosensory representations and whether those changes are persistent. Methods:  Twice‐daily seizures were elicited by delivering 1 s of electrical stimulation through carbon fiber electrodes implanted in both the corpus callosum and sensorimotor neocortex of young adult male Long‐Evans rats until a total of 20 seizures were elicited. Either 1–3 days or 3–5 weeks following the last seizure, functional magnetic resonance imaging (MRI) was used to image the brain during electrical stimulation of each forepaw independently. Key Findings:  Forepaw stimulation in control rats resulted in a focused and contralateral fMRI signal in the somatosensory neocortex. Rats that had repeated seizures had a 151% increase in the number of voxels activated in the contralateral hemisphere 1–3 days after the last seizure and a 166% increase at 3–5 weeks after the last seizure. The number of voxels activated in response to forepaw stimulation was positively correlated with the duration of the longest seizure experienced by each rat. The intensity of the activated voxels was not significantly increased at either time interval from the last seizure. Significance:  The increased area of activation in somatosensory cortex, which is persistent at 3–5 weeks, is consistent with previous observations of larger motor maps following seizures. Seizure‐induced changes in the functioning of sensory cortex may also contribute to interictal behavioral anomalies.
doi_str_mv 10.1111/j.1528-1167.2011.03317.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_916147223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2882093821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5257-1d6f4e9fb7c3f7562fe10816321b180bb38e44c6c5acc535a935bf87c3f42bed3</originalsourceid><addsrcrecordid>eNqN0UGL1DAUB_AgijuOfgUJiHhqzUuapj14kGXVgRUX0XNIMy-a0iZj0-7u-OlN3XEFT-aSB--XHP5_QiiwEvJ53ZcgeVMA1KrkDKBkQoAqbx-Qzf3iIdkwBqJoZcPOyJOUesaYqpV4TM44Zy1IUW9If4VT8mnGMFMM302wOK5zdNQtwc4-BjPQj593dMJ0iCH5awyYEp0jTRhSnI40zX5cBrNa6uIwxBsfvmV_QDPjPjP_c8mvn5JHzgwJn53uLfn67uLL-Yfi8tP73fnby8JKLlUB-9pV2LpOWeGUrLlDYA3UgkMHDes60WBV2dpKY60U0rRCdq5ZdcU73IsteXX372GKPxZMsx59sjgMJmBckm6hhkpxLv5DyqplXMosX_wj-7hMOZqkgTdCSbEmuyXPT2rpRtzrw-RHMx31n7gzeHkCJlkzuCnn7dNfJ4WQVdNm9-bO3fgBj_d7YHqtX_d6bVmvLeu1fv27fn2rL6526yR-AQDOo9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283753767</pqid></control><display><type>article</type><title>Persistent enhancement of functional MRI responsiveness to sensory stimulation following repeated seizures</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>Wiley Free Archive</source><source>IngentaConnect Open Access</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Vuong, Jennifer ; Henderson, Amy K. ; Tuor, Ursula I. ; Dunn, Jeff F. ; Teskey, G. Campbell</creator><creatorcontrib>Vuong, Jennifer ; Henderson, Amy K. ; Tuor, Ursula I. ; Dunn, Jeff F. ; Teskey, G. Campbell</creatorcontrib><description>Summary Purpose:  Neural reorganization and interictal behavioral anomalies have been documented in people with epilepsy and in animal seizure models. Alterations in behavior could be due to somatosensory dysfunction. This study was designed to determine whether seizures can lead to changes in somatosensory representations and whether those changes are persistent. Methods:  Twice‐daily seizures were elicited by delivering 1 s of electrical stimulation through carbon fiber electrodes implanted in both the corpus callosum and sensorimotor neocortex of young adult male Long‐Evans rats until a total of 20 seizures were elicited. Either 1–3 days or 3–5 weeks following the last seizure, functional magnetic resonance imaging (MRI) was used to image the brain during electrical stimulation of each forepaw independently. Key Findings:  Forepaw stimulation in control rats resulted in a focused and contralateral fMRI signal in the somatosensory neocortex. Rats that had repeated seizures had a 151% increase in the number of voxels activated in the contralateral hemisphere 1–3 days after the last seizure and a 166% increase at 3–5 weeks after the last seizure. The number of voxels activated in response to forepaw stimulation was positively correlated with the duration of the longest seizure experienced by each rat. The intensity of the activated voxels was not significantly increased at either time interval from the last seizure. Significance:  The increased area of activation in somatosensory cortex, which is persistent at 3–5 weeks, is consistent with previous observations of larger motor maps following seizures. Seizure‐induced changes in the functioning of sensory cortex may also contribute to interictal behavioral anomalies.</description><identifier>ISSN: 0013-9580</identifier><identifier>EISSN: 1528-1167</identifier><identifier>DOI: 10.1111/j.1528-1167.2011.03317.x</identifier><identifier>PMID: 22091536</identifier><identifier>CODEN: EPILAK</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Afferent Pathways - physiopathology ; Animals ; Behavior ; Biological and medical sciences ; Brain ; Brain mapping ; Carbon ; Corpus callosum ; Corpus Callosum - physiopathology ; Cortex ; Cortex (motor) ; Cortex (somatosensory) ; Electric Stimulation - adverse effects ; Electrical stimuli ; Electrodes ; Electroencephalography ; Epilepsy ; Fibers ; Forelimb - physiopathology ; Forepaw stimulation ; Functional Laterality ; Functional magnetic resonance imaging ; Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy ; Image Processing, Computer-Assisted ; Investigative techniques, diagnostic techniques (general aspects) ; Kindling ; Magnetic Resonance Imaging ; Male ; Medical sciences ; Nervous system ; Nervous system (semeiology, syndromes) ; Neuroimaging ; Neurology ; Oxygen - blood ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Rats ; Rats, Long-Evans ; Rodents ; Seizure ; Seizures ; Seizures - etiology ; Seizures - pathology ; Sensorimotor cortex ; sensorimotor system ; Somatosensory Cortex - blood supply ; Somatosensory Cortex - physiopathology ; Time Factors</subject><ispartof>Epilepsia (Copenhagen), 2011-12, Vol.52 (12), p.2285-2292</ispartof><rights>Wiley Periodicals, Inc. © 2011 International League Against Epilepsy</rights><rights>2015 INIST-CNRS</rights><rights>Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5257-1d6f4e9fb7c3f7562fe10816321b180bb38e44c6c5acc535a935bf87c3f42bed3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1528-1167.2011.03317.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1528-1167.2011.03317.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25335489$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22091536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vuong, Jennifer</creatorcontrib><creatorcontrib>Henderson, Amy K.</creatorcontrib><creatorcontrib>Tuor, Ursula I.</creatorcontrib><creatorcontrib>Dunn, Jeff F.</creatorcontrib><creatorcontrib>Teskey, G. Campbell</creatorcontrib><title>Persistent enhancement of functional MRI responsiveness to sensory stimulation following repeated seizures</title><title>Epilepsia (Copenhagen)</title><addtitle>Epilepsia</addtitle><description>Summary Purpose:  Neural reorganization and interictal behavioral anomalies have been documented in people with epilepsy and in animal seizure models. Alterations in behavior could be due to somatosensory dysfunction. This study was designed to determine whether seizures can lead to changes in somatosensory representations and whether those changes are persistent. Methods:  Twice‐daily seizures were elicited by delivering 1 s of electrical stimulation through carbon fiber electrodes implanted in both the corpus callosum and sensorimotor neocortex of young adult male Long‐Evans rats until a total of 20 seizures were elicited. Either 1–3 days or 3–5 weeks following the last seizure, functional magnetic resonance imaging (MRI) was used to image the brain during electrical stimulation of each forepaw independently. Key Findings:  Forepaw stimulation in control rats resulted in a focused and contralateral fMRI signal in the somatosensory neocortex. Rats that had repeated seizures had a 151% increase in the number of voxels activated in the contralateral hemisphere 1–3 days after the last seizure and a 166% increase at 3–5 weeks after the last seizure. The number of voxels activated in response to forepaw stimulation was positively correlated with the duration of the longest seizure experienced by each rat. The intensity of the activated voxels was not significantly increased at either time interval from the last seizure. Significance:  The increased area of activation in somatosensory cortex, which is persistent at 3–5 weeks, is consistent with previous observations of larger motor maps following seizures. Seizure‐induced changes in the functioning of sensory cortex may also contribute to interictal behavioral anomalies.</description><subject>Afferent Pathways - physiopathology</subject><subject>Animals</subject><subject>Behavior</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Brain mapping</subject><subject>Carbon</subject><subject>Corpus callosum</subject><subject>Corpus Callosum - physiopathology</subject><subject>Cortex</subject><subject>Cortex (motor)</subject><subject>Cortex (somatosensory)</subject><subject>Electric Stimulation - adverse effects</subject><subject>Electrical stimuli</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Fibers</subject><subject>Forelimb - physiopathology</subject><subject>Forepaw stimulation</subject><subject>Functional Laterality</subject><subject>Functional magnetic resonance imaging</subject><subject>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</subject><subject>Image Processing, Computer-Assisted</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Kindling</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Nervous system</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Oxygen - blood</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Rodents</subject><subject>Seizure</subject><subject>Seizures</subject><subject>Seizures - etiology</subject><subject>Seizures - pathology</subject><subject>Sensorimotor cortex</subject><subject>sensorimotor system</subject><subject>Somatosensory Cortex - blood supply</subject><subject>Somatosensory Cortex - physiopathology</subject><subject>Time Factors</subject><issn>0013-9580</issn><issn>1528-1167</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0UGL1DAUB_AgijuOfgUJiHhqzUuapj14kGXVgRUX0XNIMy-a0iZj0-7u-OlN3XEFT-aSB--XHP5_QiiwEvJ53ZcgeVMA1KrkDKBkQoAqbx-Qzf3iIdkwBqJoZcPOyJOUesaYqpV4TM44Zy1IUW9If4VT8mnGMFMM302wOK5zdNQtwc4-BjPQj593dMJ0iCH5awyYEp0jTRhSnI40zX5cBrNa6uIwxBsfvmV_QDPjPjP_c8mvn5JHzgwJn53uLfn67uLL-Yfi8tP73fnby8JKLlUB-9pV2LpOWeGUrLlDYA3UgkMHDes60WBV2dpKY60U0rRCdq5ZdcU73IsteXX372GKPxZMsx59sjgMJmBckm6hhkpxLv5DyqplXMosX_wj-7hMOZqkgTdCSbEmuyXPT2rpRtzrw-RHMx31n7gzeHkCJlkzuCnn7dNfJ4WQVdNm9-bO3fgBj_d7YHqtX_d6bVmvLeu1fv27fn2rL6526yR-AQDOo9w</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Vuong, Jennifer</creator><creator>Henderson, Amy K.</creator><creator>Tuor, Ursula I.</creator><creator>Dunn, Jeff F.</creator><creator>Teskey, G. Campbell</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>201112</creationdate><title>Persistent enhancement of functional MRI responsiveness to sensory stimulation following repeated seizures</title><author>Vuong, Jennifer ; Henderson, Amy K. ; Tuor, Ursula I. ; Dunn, Jeff F. ; Teskey, G. Campbell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5257-1d6f4e9fb7c3f7562fe10816321b180bb38e44c6c5acc535a935bf87c3f42bed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Afferent Pathways - physiopathology</topic><topic>Animals</topic><topic>Behavior</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Brain mapping</topic><topic>Carbon</topic><topic>Corpus callosum</topic><topic>Corpus Callosum - physiopathology</topic><topic>Cortex</topic><topic>Cortex (motor)</topic><topic>Cortex (somatosensory)</topic><topic>Electric Stimulation - adverse effects</topic><topic>Electrical stimuli</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Fibers</topic><topic>Forelimb - physiopathology</topic><topic>Forepaw stimulation</topic><topic>Functional Laterality</topic><topic>Functional magnetic resonance imaging</topic><topic>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</topic><topic>Image Processing, Computer-Assisted</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Kindling</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Nervous system</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Oxygen - blood</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Rodents</topic><topic>Seizure</topic><topic>Seizures</topic><topic>Seizures - etiology</topic><topic>Seizures - pathology</topic><topic>Sensorimotor cortex</topic><topic>sensorimotor system</topic><topic>Somatosensory Cortex - blood supply</topic><topic>Somatosensory Cortex - physiopathology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vuong, Jennifer</creatorcontrib><creatorcontrib>Henderson, Amy K.</creatorcontrib><creatorcontrib>Tuor, Ursula I.</creatorcontrib><creatorcontrib>Dunn, Jeff F.</creatorcontrib><creatorcontrib>Teskey, G. Campbell</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Epilepsia (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vuong, Jennifer</au><au>Henderson, Amy K.</au><au>Tuor, Ursula I.</au><au>Dunn, Jeff F.</au><au>Teskey, G. Campbell</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistent enhancement of functional MRI responsiveness to sensory stimulation following repeated seizures</atitle><jtitle>Epilepsia (Copenhagen)</jtitle><addtitle>Epilepsia</addtitle><date>2011-12</date><risdate>2011</risdate><volume>52</volume><issue>12</issue><spage>2285</spage><epage>2292</epage><pages>2285-2292</pages><issn>0013-9580</issn><eissn>1528-1167</eissn><coden>EPILAK</coden><abstract>Summary Purpose:  Neural reorganization and interictal behavioral anomalies have been documented in people with epilepsy and in animal seizure models. Alterations in behavior could be due to somatosensory dysfunction. This study was designed to determine whether seizures can lead to changes in somatosensory representations and whether those changes are persistent. Methods:  Twice‐daily seizures were elicited by delivering 1 s of electrical stimulation through carbon fiber electrodes implanted in both the corpus callosum and sensorimotor neocortex of young adult male Long‐Evans rats until a total of 20 seizures were elicited. Either 1–3 days or 3–5 weeks following the last seizure, functional magnetic resonance imaging (MRI) was used to image the brain during electrical stimulation of each forepaw independently. Key Findings:  Forepaw stimulation in control rats resulted in a focused and contralateral fMRI signal in the somatosensory neocortex. Rats that had repeated seizures had a 151% increase in the number of voxels activated in the contralateral hemisphere 1–3 days after the last seizure and a 166% increase at 3–5 weeks after the last seizure. The number of voxels activated in response to forepaw stimulation was positively correlated with the duration of the longest seizure experienced by each rat. The intensity of the activated voxels was not significantly increased at either time interval from the last seizure. Significance:  The increased area of activation in somatosensory cortex, which is persistent at 3–5 weeks, is consistent with previous observations of larger motor maps following seizures. Seizure‐induced changes in the functioning of sensory cortex may also contribute to interictal behavioral anomalies.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22091536</pmid><doi>10.1111/j.1528-1167.2011.03317.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-9580
ispartof Epilepsia (Copenhagen), 2011-12, Vol.52 (12), p.2285-2292
issn 0013-9580
1528-1167
language eng
recordid cdi_proquest_miscellaneous_916147223
source Wiley-Blackwell Journals; MEDLINE; Wiley Free Archive; IngentaConnect Open Access; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Afferent Pathways - physiopathology
Animals
Behavior
Biological and medical sciences
Brain
Brain mapping
Carbon
Corpus callosum
Corpus Callosum - physiopathology
Cortex
Cortex (motor)
Cortex (somatosensory)
Electric Stimulation - adverse effects
Electrical stimuli
Electrodes
Electroencephalography
Epilepsy
Fibers
Forelimb - physiopathology
Forepaw stimulation
Functional Laterality
Functional magnetic resonance imaging
Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy
Image Processing, Computer-Assisted
Investigative techniques, diagnostic techniques (general aspects)
Kindling
Magnetic Resonance Imaging
Male
Medical sciences
Nervous system
Nervous system (semeiology, syndromes)
Neuroimaging
Neurology
Oxygen - blood
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Rats
Rats, Long-Evans
Rodents
Seizure
Seizures
Seizures - etiology
Seizures - pathology
Sensorimotor cortex
sensorimotor system
Somatosensory Cortex - blood supply
Somatosensory Cortex - physiopathology
Time Factors
title Persistent enhancement of functional MRI responsiveness to sensory stimulation following repeated seizures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T17%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistent%20enhancement%20of%20functional%20MRI%20responsiveness%20to%20sensory%20stimulation%20following%20repeated%20seizures&rft.jtitle=Epilepsia%20(Copenhagen)&rft.au=Vuong,%20Jennifer&rft.date=2011-12&rft.volume=52&rft.issue=12&rft.spage=2285&rft.epage=2292&rft.pages=2285-2292&rft.issn=0013-9580&rft.eissn=1528-1167&rft.coden=EPILAK&rft_id=info:doi/10.1111/j.1528-1167.2011.03317.x&rft_dat=%3Cproquest_pubme%3E2882093821%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283753767&rft_id=info:pmid/22091536&rfr_iscdi=true