Crotonase Catalysis Enables Flexible Production of Functionalized Prolines and Carbapenams
The biocatalytic versatility of wildtype and engineered carboxymethylproline synthases (CMPSs) is demonstrated by the preparation of functionalized 5-carboxymethylproline derivatives methylated at C-2, C-3, C-4, or C-5 of the proline ring from appropriately substituted amino acid aldehydes and malon...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2012-01, Vol.134 (1), p.471-479 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The biocatalytic versatility of wildtype and engineered carboxymethylproline synthases (CMPSs) is demonstrated by the preparation of functionalized 5-carboxymethylproline derivatives methylated at C-2, C-3, C-4, or C-5 of the proline ring from appropriately substituted amino acid aldehydes and malonyl-coenzyme A. Notably, compounds with a quaternary center (at C-2 or C-5) were prepared in a stereoselective fashion by engineered CMPSs. The substituted-5-carboxymethyl-prolines were converted into the corresponding bicyclic β-lactams using a carbapenam synthetase. The results demonstrate the utility of the crotonase superfamily enzymes for stereoselective biocatalysis, the amenability of carbapenem biosynthesis pathways to engineering for the production of new bicyclic β-lactam derivatives, and the potential of engineered biocatalysts for the production of quaternary centers. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja208318d |