Osmotic Shock Augments Ethanol Stress in Saccharomyces cerevisiae MTCC 2918

Yeast cells sense and respond to hypertonicity. Saccharomyces cerevisiae MTCC 2918 was tested for its metabolic status in 1 M NaCl by cell viability analysis, intracellular glycerol content and total antioxidant capacity. Yeast cell viability was maximum in 1 M NaCl and 24 h addition of 1 M NaCl was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current microbiology 2012-02, Vol.64 (2), p.100-105
Hauptverfasser: John, Geraldine S. M, Gayathiri, Murugesan, Rose, Chellan, Mandal, Asit B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue 2
container_start_page 100
container_title Current microbiology
container_volume 64
creator John, Geraldine S. M
Gayathiri, Murugesan
Rose, Chellan
Mandal, Asit B
description Yeast cells sense and respond to hypertonicity. Saccharomyces cerevisiae MTCC 2918 was tested for its metabolic status in 1 M NaCl by cell viability analysis, intracellular glycerol content and total antioxidant capacity. Yeast cell viability was maximum in 1 M NaCl and 24 h addition of 1 M NaCl was effective in induction of hyperosmolarity. Increased glycerol contents in cells treated with salt indicated adaptation to osmotic stress with a maximum of 240.87 ± 0.38 mg/g dry weight (DW) at 72 h. The total antioxidant status with 1 M NaCl was 9.29 ± 0.39 mM/g DW at 96 h reflecting free radical quenching to overcome stress with increasing growth period. Considering that pre-adaptation to one type of stress evoked a protective response to other stress factors, we have attempted the cross adaptation of osmotic shock to high ethanol concentrations. In effect, we observed that osmotic shock lowered the cell survival by augmentation of cell toxicity by ethanol due to stress induction during exponential phase. Glycerol accumulation to an order of 470.27 ± 0.53 mg/g DW at 48 h in 1 M NaCl and 12% ethanol indicated that both stresses culminated in membrane disruption further leading to cell burst and contributed to the stress overload.
doi_str_mv 10.1007/s00284-011-0036-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_916144891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558659481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-729ee8837f98bebb467e3c25ac69eb28a5a8542b8b3bf6bbc5f56032892112b93</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhAdiAxQY2gevf2MtqVH5EURfTri3b3MykTOJiJ0h9exylgMSiKy_8ne_6-hDyksF7BtB-KADcyAYYawCEbuwjsmFS8AasZY_JBoQUjdGKnZBnpdwAMG6BPSUnnIMwINoN-XpZhjT1ke4OKf6gZ_N-wHEq9Hw6-DEd6W7KWArtR7rzMR58TsNdxEIjZvzVl94j_Xa13VJumXlOnnT-WPDF_XlKrj-eX20_NxeXn75szy6aKHk7NS23iMaItrMmYAhStygiVz5qi4Ebr7xRkgcTROh0CFF1SoPgxnLGeLDilLxdvbc5_ZyxTG7oS8Tj0Y-Y5uIs00xKY1kl3z1Isvp1HGwrFvTNf-hNmvNY96g-JXV90jKZrVDMqZSMnbvN_eDzXTW5pRK3VuKq1y2VuCXz6l48hwG__0386aACfAVKvRr3mP9Nfsj6eg11Pjm_z31x1zsOTAKAEkq34jcbFJyK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915468549</pqid></control><display><type>article</type><title>Osmotic Shock Augments Ethanol Stress in Saccharomyces cerevisiae MTCC 2918</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>John, Geraldine S. M ; Gayathiri, Murugesan ; Rose, Chellan ; Mandal, Asit B</creator><creatorcontrib>John, Geraldine S. M ; Gayathiri, Murugesan ; Rose, Chellan ; Mandal, Asit B</creatorcontrib><description>Yeast cells sense and respond to hypertonicity. Saccharomyces cerevisiae MTCC 2918 was tested for its metabolic status in 1 M NaCl by cell viability analysis, intracellular glycerol content and total antioxidant capacity. Yeast cell viability was maximum in 1 M NaCl and 24 h addition of 1 M NaCl was effective in induction of hyperosmolarity. Increased glycerol contents in cells treated with salt indicated adaptation to osmotic stress with a maximum of 240.87 ± 0.38 mg/g dry weight (DW) at 72 h. The total antioxidant status with 1 M NaCl was 9.29 ± 0.39 mM/g DW at 96 h reflecting free radical quenching to overcome stress with increasing growth period. Considering that pre-adaptation to one type of stress evoked a protective response to other stress factors, we have attempted the cross adaptation of osmotic shock to high ethanol concentrations. In effect, we observed that osmotic shock lowered the cell survival by augmentation of cell toxicity by ethanol due to stress induction during exponential phase. Glycerol accumulation to an order of 470.27 ± 0.53 mg/g DW at 48 h in 1 M NaCl and 12% ethanol indicated that both stresses culminated in membrane disruption further leading to cell burst and contributed to the stress overload.</description><identifier>ISSN: 0343-8651</identifier><identifier>EISSN: 1432-0991</identifier><identifier>DOI: 10.1007/s00284-011-0036-9</identifier><identifier>PMID: 22038037</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Adaptations ; antioxidant activity ; Antioxidants ; Biomedical and Life Sciences ; Biotechnology ; Cell survival ; cell viability ; Ethanol ; Ethanol - metabolism ; Free radicals ; Glycerol ; Hypertonicity ; Life Sciences ; Microbiology ; Osmotic Pressure ; Osmotic shock ; Osmotic stress ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Salts ; Sodium chloride ; Sodium Chloride - metabolism ; Stress analysis ; Toxicity ; Yeasts</subject><ispartof>Current microbiology, 2012-02, Vol.64 (2), p.100-105</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-729ee8837f98bebb467e3c25ac69eb28a5a8542b8b3bf6bbc5f56032892112b93</citedby><cites>FETCH-LOGICAL-c427t-729ee8837f98bebb467e3c25ac69eb28a5a8542b8b3bf6bbc5f56032892112b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00284-011-0036-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00284-011-0036-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22038037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>John, Geraldine S. M</creatorcontrib><creatorcontrib>Gayathiri, Murugesan</creatorcontrib><creatorcontrib>Rose, Chellan</creatorcontrib><creatorcontrib>Mandal, Asit B</creatorcontrib><title>Osmotic Shock Augments Ethanol Stress in Saccharomyces cerevisiae MTCC 2918</title><title>Current microbiology</title><addtitle>Curr Microbiol</addtitle><addtitle>Curr Microbiol</addtitle><description>Yeast cells sense and respond to hypertonicity. Saccharomyces cerevisiae MTCC 2918 was tested for its metabolic status in 1 M NaCl by cell viability analysis, intracellular glycerol content and total antioxidant capacity. Yeast cell viability was maximum in 1 M NaCl and 24 h addition of 1 M NaCl was effective in induction of hyperosmolarity. Increased glycerol contents in cells treated with salt indicated adaptation to osmotic stress with a maximum of 240.87 ± 0.38 mg/g dry weight (DW) at 72 h. The total antioxidant status with 1 M NaCl was 9.29 ± 0.39 mM/g DW at 96 h reflecting free radical quenching to overcome stress with increasing growth period. Considering that pre-adaptation to one type of stress evoked a protective response to other stress factors, we have attempted the cross adaptation of osmotic shock to high ethanol concentrations. In effect, we observed that osmotic shock lowered the cell survival by augmentation of cell toxicity by ethanol due to stress induction during exponential phase. Glycerol accumulation to an order of 470.27 ± 0.53 mg/g DW at 48 h in 1 M NaCl and 12% ethanol indicated that both stresses culminated in membrane disruption further leading to cell burst and contributed to the stress overload.</description><subject>Adaptations</subject><subject>antioxidant activity</subject><subject>Antioxidants</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell survival</subject><subject>cell viability</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Free radicals</subject><subject>Glycerol</subject><subject>Hypertonicity</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Osmotic Pressure</subject><subject>Osmotic shock</subject><subject>Osmotic stress</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Salts</subject><subject>Sodium chloride</subject><subject>Sodium Chloride - metabolism</subject><subject>Stress analysis</subject><subject>Toxicity</subject><subject>Yeasts</subject><issn>0343-8651</issn><issn>1432-0991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc1u1DAUhS0EokPhAdiAxQY2gevf2MtqVH5EURfTri3b3MykTOJiJ0h9exylgMSiKy_8ne_6-hDyksF7BtB-KADcyAYYawCEbuwjsmFS8AasZY_JBoQUjdGKnZBnpdwAMG6BPSUnnIMwINoN-XpZhjT1ke4OKf6gZ_N-wHEq9Hw6-DEd6W7KWArtR7rzMR58TsNdxEIjZvzVl94j_Xa13VJumXlOnnT-WPDF_XlKrj-eX20_NxeXn75szy6aKHk7NS23iMaItrMmYAhStygiVz5qi4Ebr7xRkgcTROh0CFF1SoPgxnLGeLDilLxdvbc5_ZyxTG7oS8Tj0Y-Y5uIs00xKY1kl3z1Isvp1HGwrFvTNf-hNmvNY96g-JXV90jKZrVDMqZSMnbvN_eDzXTW5pRK3VuKq1y2VuCXz6l48hwG__0386aACfAVKvRr3mP9Nfsj6eg11Pjm_z31x1zsOTAKAEkq34jcbFJyK</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>John, Geraldine S. M</creator><creator>Gayathiri, Murugesan</creator><creator>Rose, Chellan</creator><creator>Mandal, Asit B</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20120201</creationdate><title>Osmotic Shock Augments Ethanol Stress in Saccharomyces cerevisiae MTCC 2918</title><author>John, Geraldine S. M ; Gayathiri, Murugesan ; Rose, Chellan ; Mandal, Asit B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-729ee8837f98bebb467e3c25ac69eb28a5a8542b8b3bf6bbc5f56032892112b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptations</topic><topic>antioxidant activity</topic><topic>Antioxidants</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell survival</topic><topic>cell viability</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Free radicals</topic><topic>Glycerol</topic><topic>Hypertonicity</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Osmotic Pressure</topic><topic>Osmotic shock</topic><topic>Osmotic stress</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Salts</topic><topic>Sodium chloride</topic><topic>Sodium Chloride - metabolism</topic><topic>Stress analysis</topic><topic>Toxicity</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>John, Geraldine S. M</creatorcontrib><creatorcontrib>Gayathiri, Murugesan</creatorcontrib><creatorcontrib>Rose, Chellan</creatorcontrib><creatorcontrib>Mandal, Asit B</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Current microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>John, Geraldine S. M</au><au>Gayathiri, Murugesan</au><au>Rose, Chellan</au><au>Mandal, Asit B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osmotic Shock Augments Ethanol Stress in Saccharomyces cerevisiae MTCC 2918</atitle><jtitle>Current microbiology</jtitle><stitle>Curr Microbiol</stitle><addtitle>Curr Microbiol</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>64</volume><issue>2</issue><spage>100</spage><epage>105</epage><pages>100-105</pages><issn>0343-8651</issn><eissn>1432-0991</eissn><abstract>Yeast cells sense and respond to hypertonicity. Saccharomyces cerevisiae MTCC 2918 was tested for its metabolic status in 1 M NaCl by cell viability analysis, intracellular glycerol content and total antioxidant capacity. Yeast cell viability was maximum in 1 M NaCl and 24 h addition of 1 M NaCl was effective in induction of hyperosmolarity. Increased glycerol contents in cells treated with salt indicated adaptation to osmotic stress with a maximum of 240.87 ± 0.38 mg/g dry weight (DW) at 72 h. The total antioxidant status with 1 M NaCl was 9.29 ± 0.39 mM/g DW at 96 h reflecting free radical quenching to overcome stress with increasing growth period. Considering that pre-adaptation to one type of stress evoked a protective response to other stress factors, we have attempted the cross adaptation of osmotic shock to high ethanol concentrations. In effect, we observed that osmotic shock lowered the cell survival by augmentation of cell toxicity by ethanol due to stress induction during exponential phase. Glycerol accumulation to an order of 470.27 ± 0.53 mg/g DW at 48 h in 1 M NaCl and 12% ethanol indicated that both stresses culminated in membrane disruption further leading to cell burst and contributed to the stress overload.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>22038037</pmid><doi>10.1007/s00284-011-0036-9</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0343-8651
ispartof Current microbiology, 2012-02, Vol.64 (2), p.100-105
issn 0343-8651
1432-0991
language eng
recordid cdi_proquest_miscellaneous_916144891
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Adaptations
antioxidant activity
Antioxidants
Biomedical and Life Sciences
Biotechnology
Cell survival
cell viability
Ethanol
Ethanol - metabolism
Free radicals
Glycerol
Hypertonicity
Life Sciences
Microbiology
Osmotic Pressure
Osmotic shock
Osmotic stress
Saccharomyces cerevisiae
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Salts
Sodium chloride
Sodium Chloride - metabolism
Stress analysis
Toxicity
Yeasts
title Osmotic Shock Augments Ethanol Stress in Saccharomyces cerevisiae MTCC 2918
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osmotic%20Shock%20Augments%20Ethanol%20Stress%20in%20Saccharomyces%20cerevisiae%20MTCC%202918&rft.jtitle=Current%20microbiology&rft.au=John,%20Geraldine%20S.%20M&rft.date=2012-02-01&rft.volume=64&rft.issue=2&rft.spage=100&rft.epage=105&rft.pages=100-105&rft.issn=0343-8651&rft.eissn=1432-0991&rft_id=info:doi/10.1007/s00284-011-0036-9&rft_dat=%3Cproquest_cross%3E2558659481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=915468549&rft_id=info:pmid/22038037&rfr_iscdi=true