Osmotic Shock Augments Ethanol Stress in Saccharomyces cerevisiae MTCC 2918
Yeast cells sense and respond to hypertonicity. Saccharomyces cerevisiae MTCC 2918 was tested for its metabolic status in 1 M NaCl by cell viability analysis, intracellular glycerol content and total antioxidant capacity. Yeast cell viability was maximum in 1 M NaCl and 24 h addition of 1 M NaCl was...
Gespeichert in:
Veröffentlicht in: | Current microbiology 2012-02, Vol.64 (2), p.100-105 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105 |
---|---|
container_issue | 2 |
container_start_page | 100 |
container_title | Current microbiology |
container_volume | 64 |
creator | John, Geraldine S. M Gayathiri, Murugesan Rose, Chellan Mandal, Asit B |
description | Yeast cells sense and respond to hypertonicity. Saccharomyces cerevisiae MTCC 2918 was tested for its metabolic status in 1 M NaCl by cell viability analysis, intracellular glycerol content and total antioxidant capacity. Yeast cell viability was maximum in 1 M NaCl and 24 h addition of 1 M NaCl was effective in induction of hyperosmolarity. Increased glycerol contents in cells treated with salt indicated adaptation to osmotic stress with a maximum of 240.87 ± 0.38 mg/g dry weight (DW) at 72 h. The total antioxidant status with 1 M NaCl was 9.29 ± 0.39 mM/g DW at 96 h reflecting free radical quenching to overcome stress with increasing growth period. Considering that pre-adaptation to one type of stress evoked a protective response to other stress factors, we have attempted the cross adaptation of osmotic shock to high ethanol concentrations. In effect, we observed that osmotic shock lowered the cell survival by augmentation of cell toxicity by ethanol due to stress induction during exponential phase. Glycerol accumulation to an order of 470.27 ± 0.53 mg/g DW at 48 h in 1 M NaCl and 12% ethanol indicated that both stresses culminated in membrane disruption further leading to cell burst and contributed to the stress overload. |
doi_str_mv | 10.1007/s00284-011-0036-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_916144891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558659481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-729ee8837f98bebb467e3c25ac69eb28a5a8542b8b3bf6bbc5f56032892112b93</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhAdiAxQY2gevf2MtqVH5EURfTri3b3MykTOJiJ0h9exylgMSiKy_8ne_6-hDyksF7BtB-KADcyAYYawCEbuwjsmFS8AasZY_JBoQUjdGKnZBnpdwAMG6BPSUnnIMwINoN-XpZhjT1ke4OKf6gZ_N-wHEq9Hw6-DEd6W7KWArtR7rzMR58TsNdxEIjZvzVl94j_Xa13VJumXlOnnT-WPDF_XlKrj-eX20_NxeXn75szy6aKHk7NS23iMaItrMmYAhStygiVz5qi4Ebr7xRkgcTROh0CFF1SoPgxnLGeLDilLxdvbc5_ZyxTG7oS8Tj0Y-Y5uIs00xKY1kl3z1Isvp1HGwrFvTNf-hNmvNY96g-JXV90jKZrVDMqZSMnbvN_eDzXTW5pRK3VuKq1y2VuCXz6l48hwG__0386aACfAVKvRr3mP9Nfsj6eg11Pjm_z31x1zsOTAKAEkq34jcbFJyK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915468549</pqid></control><display><type>article</type><title>Osmotic Shock Augments Ethanol Stress in Saccharomyces cerevisiae MTCC 2918</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>John, Geraldine S. M ; Gayathiri, Murugesan ; Rose, Chellan ; Mandal, Asit B</creator><creatorcontrib>John, Geraldine S. M ; Gayathiri, Murugesan ; Rose, Chellan ; Mandal, Asit B</creatorcontrib><description>Yeast cells sense and respond to hypertonicity. Saccharomyces cerevisiae MTCC 2918 was tested for its metabolic status in 1 M NaCl by cell viability analysis, intracellular glycerol content and total antioxidant capacity. Yeast cell viability was maximum in 1 M NaCl and 24 h addition of 1 M NaCl was effective in induction of hyperosmolarity. Increased glycerol contents in cells treated with salt indicated adaptation to osmotic stress with a maximum of 240.87 ± 0.38 mg/g dry weight (DW) at 72 h. The total antioxidant status with 1 M NaCl was 9.29 ± 0.39 mM/g DW at 96 h reflecting free radical quenching to overcome stress with increasing growth period. Considering that pre-adaptation to one type of stress evoked a protective response to other stress factors, we have attempted the cross adaptation of osmotic shock to high ethanol concentrations. In effect, we observed that osmotic shock lowered the cell survival by augmentation of cell toxicity by ethanol due to stress induction during exponential phase. Glycerol accumulation to an order of 470.27 ± 0.53 mg/g DW at 48 h in 1 M NaCl and 12% ethanol indicated that both stresses culminated in membrane disruption further leading to cell burst and contributed to the stress overload.</description><identifier>ISSN: 0343-8651</identifier><identifier>EISSN: 1432-0991</identifier><identifier>DOI: 10.1007/s00284-011-0036-9</identifier><identifier>PMID: 22038037</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Adaptations ; antioxidant activity ; Antioxidants ; Biomedical and Life Sciences ; Biotechnology ; Cell survival ; cell viability ; Ethanol ; Ethanol - metabolism ; Free radicals ; Glycerol ; Hypertonicity ; Life Sciences ; Microbiology ; Osmotic Pressure ; Osmotic shock ; Osmotic stress ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - metabolism ; Salts ; Sodium chloride ; Sodium Chloride - metabolism ; Stress analysis ; Toxicity ; Yeasts</subject><ispartof>Current microbiology, 2012-02, Vol.64 (2), p.100-105</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-729ee8837f98bebb467e3c25ac69eb28a5a8542b8b3bf6bbc5f56032892112b93</citedby><cites>FETCH-LOGICAL-c427t-729ee8837f98bebb467e3c25ac69eb28a5a8542b8b3bf6bbc5f56032892112b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00284-011-0036-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00284-011-0036-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22038037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>John, Geraldine S. M</creatorcontrib><creatorcontrib>Gayathiri, Murugesan</creatorcontrib><creatorcontrib>Rose, Chellan</creatorcontrib><creatorcontrib>Mandal, Asit B</creatorcontrib><title>Osmotic Shock Augments Ethanol Stress in Saccharomyces cerevisiae MTCC 2918</title><title>Current microbiology</title><addtitle>Curr Microbiol</addtitle><addtitle>Curr Microbiol</addtitle><description>Yeast cells sense and respond to hypertonicity. Saccharomyces cerevisiae MTCC 2918 was tested for its metabolic status in 1 M NaCl by cell viability analysis, intracellular glycerol content and total antioxidant capacity. Yeast cell viability was maximum in 1 M NaCl and 24 h addition of 1 M NaCl was effective in induction of hyperosmolarity. Increased glycerol contents in cells treated with salt indicated adaptation to osmotic stress with a maximum of 240.87 ± 0.38 mg/g dry weight (DW) at 72 h. The total antioxidant status with 1 M NaCl was 9.29 ± 0.39 mM/g DW at 96 h reflecting free radical quenching to overcome stress with increasing growth period. Considering that pre-adaptation to one type of stress evoked a protective response to other stress factors, we have attempted the cross adaptation of osmotic shock to high ethanol concentrations. In effect, we observed that osmotic shock lowered the cell survival by augmentation of cell toxicity by ethanol due to stress induction during exponential phase. Glycerol accumulation to an order of 470.27 ± 0.53 mg/g DW at 48 h in 1 M NaCl and 12% ethanol indicated that both stresses culminated in membrane disruption further leading to cell burst and contributed to the stress overload.</description><subject>Adaptations</subject><subject>antioxidant activity</subject><subject>Antioxidants</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell survival</subject><subject>cell viability</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Free radicals</subject><subject>Glycerol</subject><subject>Hypertonicity</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Osmotic Pressure</subject><subject>Osmotic shock</subject><subject>Osmotic stress</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Salts</subject><subject>Sodium chloride</subject><subject>Sodium Chloride - metabolism</subject><subject>Stress analysis</subject><subject>Toxicity</subject><subject>Yeasts</subject><issn>0343-8651</issn><issn>1432-0991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc1u1DAUhS0EokPhAdiAxQY2gevf2MtqVH5EURfTri3b3MykTOJiJ0h9exylgMSiKy_8ne_6-hDyksF7BtB-KADcyAYYawCEbuwjsmFS8AasZY_JBoQUjdGKnZBnpdwAMG6BPSUnnIMwINoN-XpZhjT1ke4OKf6gZ_N-wHEq9Hw6-DEd6W7KWArtR7rzMR58TsNdxEIjZvzVl94j_Xa13VJumXlOnnT-WPDF_XlKrj-eX20_NxeXn75szy6aKHk7NS23iMaItrMmYAhStygiVz5qi4Ebr7xRkgcTROh0CFF1SoPgxnLGeLDilLxdvbc5_ZyxTG7oS8Tj0Y-Y5uIs00xKY1kl3z1Isvp1HGwrFvTNf-hNmvNY96g-JXV90jKZrVDMqZSMnbvN_eDzXTW5pRK3VuKq1y2VuCXz6l48hwG__0386aACfAVKvRr3mP9Nfsj6eg11Pjm_z31x1zsOTAKAEkq34jcbFJyK</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>John, Geraldine S. M</creator><creator>Gayathiri, Murugesan</creator><creator>Rose, Chellan</creator><creator>Mandal, Asit B</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20120201</creationdate><title>Osmotic Shock Augments Ethanol Stress in Saccharomyces cerevisiae MTCC 2918</title><author>John, Geraldine S. M ; Gayathiri, Murugesan ; Rose, Chellan ; Mandal, Asit B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-729ee8837f98bebb467e3c25ac69eb28a5a8542b8b3bf6bbc5f56032892112b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptations</topic><topic>antioxidant activity</topic><topic>Antioxidants</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell survival</topic><topic>cell viability</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Free radicals</topic><topic>Glycerol</topic><topic>Hypertonicity</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Osmotic Pressure</topic><topic>Osmotic shock</topic><topic>Osmotic stress</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Salts</topic><topic>Sodium chloride</topic><topic>Sodium Chloride - metabolism</topic><topic>Stress analysis</topic><topic>Toxicity</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>John, Geraldine S. M</creatorcontrib><creatorcontrib>Gayathiri, Murugesan</creatorcontrib><creatorcontrib>Rose, Chellan</creatorcontrib><creatorcontrib>Mandal, Asit B</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Current microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>John, Geraldine S. M</au><au>Gayathiri, Murugesan</au><au>Rose, Chellan</au><au>Mandal, Asit B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osmotic Shock Augments Ethanol Stress in Saccharomyces cerevisiae MTCC 2918</atitle><jtitle>Current microbiology</jtitle><stitle>Curr Microbiol</stitle><addtitle>Curr Microbiol</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>64</volume><issue>2</issue><spage>100</spage><epage>105</epage><pages>100-105</pages><issn>0343-8651</issn><eissn>1432-0991</eissn><abstract>Yeast cells sense and respond to hypertonicity. Saccharomyces cerevisiae MTCC 2918 was tested for its metabolic status in 1 M NaCl by cell viability analysis, intracellular glycerol content and total antioxidant capacity. Yeast cell viability was maximum in 1 M NaCl and 24 h addition of 1 M NaCl was effective in induction of hyperosmolarity. Increased glycerol contents in cells treated with salt indicated adaptation to osmotic stress with a maximum of 240.87 ± 0.38 mg/g dry weight (DW) at 72 h. The total antioxidant status with 1 M NaCl was 9.29 ± 0.39 mM/g DW at 96 h reflecting free radical quenching to overcome stress with increasing growth period. Considering that pre-adaptation to one type of stress evoked a protective response to other stress factors, we have attempted the cross adaptation of osmotic shock to high ethanol concentrations. In effect, we observed that osmotic shock lowered the cell survival by augmentation of cell toxicity by ethanol due to stress induction during exponential phase. Glycerol accumulation to an order of 470.27 ± 0.53 mg/g DW at 48 h in 1 M NaCl and 12% ethanol indicated that both stresses culminated in membrane disruption further leading to cell burst and contributed to the stress overload.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>22038037</pmid><doi>10.1007/s00284-011-0036-9</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0343-8651 |
ispartof | Current microbiology, 2012-02, Vol.64 (2), p.100-105 |
issn | 0343-8651 1432-0991 |
language | eng |
recordid | cdi_proquest_miscellaneous_916144891 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Adaptations antioxidant activity Antioxidants Biomedical and Life Sciences Biotechnology Cell survival cell viability Ethanol Ethanol - metabolism Free radicals Glycerol Hypertonicity Life Sciences Microbiology Osmotic Pressure Osmotic shock Osmotic stress Saccharomyces cerevisiae Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Salts Sodium chloride Sodium Chloride - metabolism Stress analysis Toxicity Yeasts |
title | Osmotic Shock Augments Ethanol Stress in Saccharomyces cerevisiae MTCC 2918 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osmotic%20Shock%20Augments%20Ethanol%20Stress%20in%20Saccharomyces%20cerevisiae%20MTCC%202918&rft.jtitle=Current%20microbiology&rft.au=John,%20Geraldine%20S.%20M&rft.date=2012-02-01&rft.volume=64&rft.issue=2&rft.spage=100&rft.epage=105&rft.pages=100-105&rft.issn=0343-8651&rft.eissn=1432-0991&rft_id=info:doi/10.1007/s00284-011-0036-9&rft_dat=%3Cproquest_cross%3E2558659481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=915468549&rft_id=info:pmid/22038037&rfr_iscdi=true |