A NOVEL COMPARATIVE METHOD FOR IDENTIFYING SHIFTS IN THE RATE OF CHARACTER EVOLUTION ON TREES
Evolutionary biologists since Darwin have been fascinated by differences in the rate of trait-evolutionary change across lineages. Despite this continued interest, we still lack methods for identifying shifts in evolutionary rates on the growing tree of life while accommodating uncertainty in the ev...
Gespeichert in:
Veröffentlicht in: | Evolution 2011-12, Vol.65 (12), p.3578-3589 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3589 |
---|---|
container_issue | 12 |
container_start_page | 3578 |
container_title | Evolution |
container_volume | 65 |
creator | Eastman, Jonathan M. Alfaro, Michael E. Joyce, Paul Hipp, Andrew L. Harmon, Luke J. |
description | Evolutionary biologists since Darwin have been fascinated by differences in the rate of trait-evolutionary change across lineages. Despite this continued interest, we still lack methods for identifying shifts in evolutionary rates on the growing tree of life while accommodating uncertainty in the evolutionary process. Here we introduce a Bayesian approach for identifying complex patterns in the evolution of continuous traits. The method (auteur) uses reversible-jump Markov chain Monte Carlo sampling to more fully characterize the complexity of trait evolution, considering models that range in complexity from those with a single global rate to potentially ones in which each branch in the tree has its own independent rate. This newly introduced approach performs well in recovering simulated rate shifts and simulated rates for datasets nearing the size typical for comparative phylogenetic study (i.e., ≥ 64 tips). Analysis of two large empirical datasets of vertebrate body size reveal overwhelming support for multiple-rate models of evolution, and we observe exceptionally high rates of body-size evolution in a group of emydid turtles relative to their evolutionary background, auteur will facilitate identification of exceptional evolutionary dynamics, essential to the study of both adaptive radiation and stasis. |
doi_str_mv | 10.1111/j.1558-5646.2011.01401.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_915628537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41317097</jstor_id><sourcerecordid>41317097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5221-ebbad4468339ff3395cc54e192e5ea88563b37b236f41a205d16864ad9e17b753</originalsourceid><addsrcrecordid>eNpdkV9v0zAUxS0EYmXwEUAWLzwl-Ppf4gceqsxpImXJlHpFPCAraV2poV23pBXdt8ehow9Ylm35_M7VtQ9CGEgIfnztQhAiDoTkMqQEICTACYSnV2hyEV6jCfHXAYspuULvhqEjhCgB6i26ohQYozSaoJ9TXFYLXeCkur2b1lOTLzS-1SarbnBa1Ti_0aXJ0x95OcPzLE_NHOclNpnGntW4SnGSeVtidI31oiruTV6V2E9Taz1_j96sm-3gPrzs1-g-1SbJgqKa5cm0CJbCtxK4tm1WnMuYMbVe-0Usl4I7UNQJ18SxkKxlUUuZXHNoKBErkLHkzUo5iNpIsGv05Vz3sd8_Hd1wsLvNsHTbbfPg9sfBKhCSxoJFnvz8H9ntj_2Db84qEikgXBEPfXqBju3Orexjv9k1_bP9920e-HYGfm-27vmiA7FjPLazYwp2TMGO8di_8diT9T80nrz_49nfDYd9f_FzYBARNdYPzvpmOLjTRW_6X1ZGLBL2ezmzi_RO-GfVtmB_AIqXkOs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907910490</pqid></control><display><type>article</type><title>A NOVEL COMPARATIVE METHOD FOR IDENTIFYING SHIFTS IN THE RATE OF CHARACTER EVOLUTION ON TREES</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>JSTOR</source><creator>Eastman, Jonathan M. ; Alfaro, Michael E. ; Joyce, Paul ; Hipp, Andrew L. ; Harmon, Luke J.</creator><creatorcontrib>Eastman, Jonathan M. ; Alfaro, Michael E. ; Joyce, Paul ; Hipp, Andrew L. ; Harmon, Luke J.</creatorcontrib><description>Evolutionary biologists since Darwin have been fascinated by differences in the rate of trait-evolutionary change across lineages. Despite this continued interest, we still lack methods for identifying shifts in evolutionary rates on the growing tree of life while accommodating uncertainty in the evolutionary process. Here we introduce a Bayesian approach for identifying complex patterns in the evolution of continuous traits. The method (auteur) uses reversible-jump Markov chain Monte Carlo sampling to more fully characterize the complexity of trait evolution, considering models that range in complexity from those with a single global rate to potentially ones in which each branch in the tree has its own independent rate. This newly introduced approach performs well in recovering simulated rate shifts and simulated rates for datasets nearing the size typical for comparative phylogenetic study (i.e., ≥ 64 tips). Analysis of two large empirical datasets of vertebrate body size reveal overwhelming support for multiple-rate models of evolution, and we observe exceptionally high rates of body-size evolution in a group of emydid turtles relative to their evolutionary background, auteur will facilitate identification of exceptional evolutionary dynamics, essential to the study of both adaptive radiation and stasis.</description><identifier>ISSN: 0014-3820</identifier><identifier>EISSN: 1558-5646</identifier><identifier>DOI: 10.1111/j.1558-5646.2011.01401.x</identifier><identifier>PMID: 22133227</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Animals ; Bayes Theorem ; Bayesian analysis ; Bayesian inference ; Biological evolution ; Body Size ; Chelonia ; comparative methods ; Comparative studies ; Evolution ; Evolutionary biology ; Markov Chains ; Modeling ; Models, Biological ; Monte Carlo Method ; Monte Carlo simulation ; Parametric models ; Phenotypic traits ; Phylogenetics ; Phylogeny ; Primates ; rate heterogeneity ; reversible-jump MCMC ; Simulations ; Time Factors ; trait evolution ; Trees ; Vertebrates</subject><ispartof>Evolution, 2011-12, Vol.65 (12), p.3578-3589</ispartof><rights>Copyright © 2011 Society for the Study of Evolution</rights><rights>2011 The Author(s). © 2011 The Society for the Study of Evolution.</rights><rights>2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.</rights><rights>Copyright Society for the Study of Evolution Dec 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5221-ebbad4468339ff3395cc54e192e5ea88563b37b236f41a205d16864ad9e17b753</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41317097$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41317097$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,782,786,805,1419,27933,27934,45583,45584,58026,58259</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22133227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eastman, Jonathan M.</creatorcontrib><creatorcontrib>Alfaro, Michael E.</creatorcontrib><creatorcontrib>Joyce, Paul</creatorcontrib><creatorcontrib>Hipp, Andrew L.</creatorcontrib><creatorcontrib>Harmon, Luke J.</creatorcontrib><title>A NOVEL COMPARATIVE METHOD FOR IDENTIFYING SHIFTS IN THE RATE OF CHARACTER EVOLUTION ON TREES</title><title>Evolution</title><addtitle>Evolution</addtitle><description>Evolutionary biologists since Darwin have been fascinated by differences in the rate of trait-evolutionary change across lineages. Despite this continued interest, we still lack methods for identifying shifts in evolutionary rates on the growing tree of life while accommodating uncertainty in the evolutionary process. Here we introduce a Bayesian approach for identifying complex patterns in the evolution of continuous traits. The method (auteur) uses reversible-jump Markov chain Monte Carlo sampling to more fully characterize the complexity of trait evolution, considering models that range in complexity from those with a single global rate to potentially ones in which each branch in the tree has its own independent rate. This newly introduced approach performs well in recovering simulated rate shifts and simulated rates for datasets nearing the size typical for comparative phylogenetic study (i.e., ≥ 64 tips). Analysis of two large empirical datasets of vertebrate body size reveal overwhelming support for multiple-rate models of evolution, and we observe exceptionally high rates of body-size evolution in a group of emydid turtles relative to their evolutionary background, auteur will facilitate identification of exceptional evolutionary dynamics, essential to the study of both adaptive radiation and stasis.</description><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Biological evolution</subject><subject>Body Size</subject><subject>Chelonia</subject><subject>comparative methods</subject><subject>Comparative studies</subject><subject>Evolution</subject><subject>Evolutionary biology</subject><subject>Markov Chains</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Parametric models</subject><subject>Phenotypic traits</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Primates</subject><subject>rate heterogeneity</subject><subject>reversible-jump MCMC</subject><subject>Simulations</subject><subject>Time Factors</subject><subject>trait evolution</subject><subject>Trees</subject><subject>Vertebrates</subject><issn>0014-3820</issn><issn>1558-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkV9v0zAUxS0EYmXwEUAWLzwl-Ppf4gceqsxpImXJlHpFPCAraV2poV23pBXdt8ehow9Ylm35_M7VtQ9CGEgIfnztQhAiDoTkMqQEICTACYSnV2hyEV6jCfHXAYspuULvhqEjhCgB6i26ohQYozSaoJ9TXFYLXeCkur2b1lOTLzS-1SarbnBa1Ti_0aXJ0x95OcPzLE_NHOclNpnGntW4SnGSeVtidI31oiruTV6V2E9Taz1_j96sm-3gPrzs1-g-1SbJgqKa5cm0CJbCtxK4tm1WnMuYMbVe-0Usl4I7UNQJ18SxkKxlUUuZXHNoKBErkLHkzUo5iNpIsGv05Vz3sd8_Hd1wsLvNsHTbbfPg9sfBKhCSxoJFnvz8H9ntj_2Db84qEikgXBEPfXqBju3Orexjv9k1_bP9920e-HYGfm-27vmiA7FjPLazYwp2TMGO8di_8diT9T80nrz_49nfDYd9f_FzYBARNdYPzvpmOLjTRW_6X1ZGLBL2ezmzi_RO-GfVtmB_AIqXkOs</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Eastman, Jonathan M.</creator><creator>Alfaro, Michael E.</creator><creator>Joyce, Paul</creator><creator>Hipp, Andrew L.</creator><creator>Harmon, Luke J.</creator><general>Blackwell Publishing Inc</general><general>Wiley Subscription Services, Inc</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201112</creationdate><title>A NOVEL COMPARATIVE METHOD FOR IDENTIFYING SHIFTS IN THE RATE OF CHARACTER EVOLUTION ON TREES</title><author>Eastman, Jonathan M. ; Alfaro, Michael E. ; Joyce, Paul ; Hipp, Andrew L. ; Harmon, Luke J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5221-ebbad4468339ff3395cc54e192e5ea88563b37b236f41a205d16864ad9e17b753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Biological evolution</topic><topic>Body Size</topic><topic>Chelonia</topic><topic>comparative methods</topic><topic>Comparative studies</topic><topic>Evolution</topic><topic>Evolutionary biology</topic><topic>Markov Chains</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Parametric models</topic><topic>Phenotypic traits</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Primates</topic><topic>rate heterogeneity</topic><topic>reversible-jump MCMC</topic><topic>Simulations</topic><topic>Time Factors</topic><topic>trait evolution</topic><topic>Trees</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eastman, Jonathan M.</creatorcontrib><creatorcontrib>Alfaro, Michael E.</creatorcontrib><creatorcontrib>Joyce, Paul</creatorcontrib><creatorcontrib>Hipp, Andrew L.</creatorcontrib><creatorcontrib>Harmon, Luke J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eastman, Jonathan M.</au><au>Alfaro, Michael E.</au><au>Joyce, Paul</au><au>Hipp, Andrew L.</au><au>Harmon, Luke J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A NOVEL COMPARATIVE METHOD FOR IDENTIFYING SHIFTS IN THE RATE OF CHARACTER EVOLUTION ON TREES</atitle><jtitle>Evolution</jtitle><addtitle>Evolution</addtitle><date>2011-12</date><risdate>2011</risdate><volume>65</volume><issue>12</issue><spage>3578</spage><epage>3589</epage><pages>3578-3589</pages><issn>0014-3820</issn><eissn>1558-5646</eissn><abstract>Evolutionary biologists since Darwin have been fascinated by differences in the rate of trait-evolutionary change across lineages. Despite this continued interest, we still lack methods for identifying shifts in evolutionary rates on the growing tree of life while accommodating uncertainty in the evolutionary process. Here we introduce a Bayesian approach for identifying complex patterns in the evolution of continuous traits. The method (auteur) uses reversible-jump Markov chain Monte Carlo sampling to more fully characterize the complexity of trait evolution, considering models that range in complexity from those with a single global rate to potentially ones in which each branch in the tree has its own independent rate. This newly introduced approach performs well in recovering simulated rate shifts and simulated rates for datasets nearing the size typical for comparative phylogenetic study (i.e., ≥ 64 tips). Analysis of two large empirical datasets of vertebrate body size reveal overwhelming support for multiple-rate models of evolution, and we observe exceptionally high rates of body-size evolution in a group of emydid turtles relative to their evolutionary background, auteur will facilitate identification of exceptional evolutionary dynamics, essential to the study of both adaptive radiation and stasis.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>22133227</pmid><doi>10.1111/j.1558-5646.2011.01401.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-3820 |
ispartof | Evolution, 2011-12, Vol.65 (12), p.3578-3589 |
issn | 0014-3820 1558-5646 |
language | eng |
recordid | cdi_proquest_miscellaneous_915628537 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; JSTOR |
subjects | Animals Bayes Theorem Bayesian analysis Bayesian inference Biological evolution Body Size Chelonia comparative methods Comparative studies Evolution Evolutionary biology Markov Chains Modeling Models, Biological Monte Carlo Method Monte Carlo simulation Parametric models Phenotypic traits Phylogenetics Phylogeny Primates rate heterogeneity reversible-jump MCMC Simulations Time Factors trait evolution Trees Vertebrates |
title | A NOVEL COMPARATIVE METHOD FOR IDENTIFYING SHIFTS IN THE RATE OF CHARACTER EVOLUTION ON TREES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T04%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20NOVEL%20COMPARATIVE%20METHOD%20FOR%20IDENTIFYING%20SHIFTS%20IN%20THE%20RATE%20OF%20CHARACTER%20EVOLUTION%20ON%20TREES&rft.jtitle=Evolution&rft.au=Eastman,%20Jonathan%20M.&rft.date=2011-12&rft.volume=65&rft.issue=12&rft.spage=3578&rft.epage=3589&rft.pages=3578-3589&rft.issn=0014-3820&rft.eissn=1558-5646&rft_id=info:doi/10.1111/j.1558-5646.2011.01401.x&rft_dat=%3Cjstor_proqu%3E41317097%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907910490&rft_id=info:pmid/22133227&rft_jstor_id=41317097&rfr_iscdi=true |