Membrane permeate flux and rejection factor prediction using intelligent systems

Backpropagation artificial neural network (BPNN), radial basis function (RBF) and adaptive neuro-fuzzy inference system (ANFIS) were utilized to predict starch removal performance from starchy wastewater using a hydrophilic polyethersulfone membrane with 0.65 μm pore size in a plate and frame homema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Desalination 2012-01, Vol.284 (4), p.92-99
Hauptverfasser: Sargolzaei, J., Haghighi Asl, M., Hedayati Moghaddam, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue 4
container_start_page 92
container_title Desalination
container_volume 284
creator Sargolzaei, J.
Haghighi Asl, M.
Hedayati Moghaddam, A.
description Backpropagation artificial neural network (BPNN), radial basis function (RBF) and adaptive neuro-fuzzy inference system (ANFIS) were utilized to predict starch removal performance from starchy wastewater using a hydrophilic polyethersulfone membrane with 0.65 μm pore size in a plate and frame homemade membrane module. Our study focuses on evaluation of membrane performance by optimum condition determination of operative parameters which affect the COD removal percentage and permeate flux. In this experiment, a four input vector was surveyed, including flow and temperature of feed, pH and concentration of permeate. In BPNN the number of neurons in the hidden layers needs to be chosen carefully to obtain a reliable network while choosing this structure is very time consuming. The best BPNN performance was obtained with 4 hidden layers for permeation and rejection factor prediction for BPNN. ANFIS and RBF simulations have also been used for comparison with BPNN. The results show a good agreement however the ANFIS prediction was better than two other simulation methods. In the basis of comparison between obtained results in this research, it may be an appropriate interpretation that for those chemical processes with performance which relied upon different variables, good performance prediction will be achieved by ANFIS systems. ► Intelligent systems are used to predict the performance of the membrane process. ► We focus on performance evaluation by optimizing rejection factor and permeate flux. ► We overcome the complexity of input and output dependency by different structures. ► Intelligent system results show good adaption however the ANFIS fit more suitable.
doi_str_mv 10.1016/j.desal.2011.08.041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_915493983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011916411007430</els_id><sourcerecordid>1671483211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-72ccee91123c7300b2037a6249642254435a2c99d51a6d0d886916785f7b1e803</originalsourceid><addsrcrecordid>eNp9kUtv1DAQgC0EEkvhF3AgFwSXpDO2k9gHDqiCFqkVlaBny-tMVl7lsdjZiv77zpKKY0-WPd-8PgvxHqFCwOZ8X3WU_VBJQKzAVKDxhdigaVWpdaNfig1wpLTY6NfiTc57vkqr1Ebc3tC4TX6i4kBpJL9Q0Q_Hv4WfuiLRnsIS56nofVjmVBwSdXF9OeY47Yo4LTQMcUfTUuSHvNCY34pXvR8yvXs6z8Td92-_L67K65-XPy6-XpdBS7mUrQyByCJKFVoFsJWgWt9IbRuO11qr2stgbVejbzrojGl4-tbUfbtFMqDOxKe17iHNf46UFzfGHHga3mU-Zmex1lZZo5j8_CzJZVEbJREZVSsa0pxzot4dUhx9enAI7mTa7d0_0-5k2oFxbJqzPj418Dn4oWedIeb_qbyNtVq1zH1Yud7Pzu8SM3e_uFANABbq9kR8WQlic_eRkssh0hRYe-KvcN0cn53kEdUnnPE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671483211</pqid></control><display><type>article</type><title>Membrane permeate flux and rejection factor prediction using intelligent systems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sargolzaei, J. ; Haghighi Asl, M. ; Hedayati Moghaddam, A.</creator><creatorcontrib>Sargolzaei, J. ; Haghighi Asl, M. ; Hedayati Moghaddam, A.</creatorcontrib><description>Backpropagation artificial neural network (BPNN), radial basis function (RBF) and adaptive neuro-fuzzy inference system (ANFIS) were utilized to predict starch removal performance from starchy wastewater using a hydrophilic polyethersulfone membrane with 0.65 μm pore size in a plate and frame homemade membrane module. Our study focuses on evaluation of membrane performance by optimum condition determination of operative parameters which affect the COD removal percentage and permeate flux. In this experiment, a four input vector was surveyed, including flow and temperature of feed, pH and concentration of permeate. In BPNN the number of neurons in the hidden layers needs to be chosen carefully to obtain a reliable network while choosing this structure is very time consuming. The best BPNN performance was obtained with 4 hidden layers for permeation and rejection factor prediction for BPNN. ANFIS and RBF simulations have also been used for comparison with BPNN. The results show a good agreement however the ANFIS prediction was better than two other simulation methods. In the basis of comparison between obtained results in this research, it may be an appropriate interpretation that for those chemical processes with performance which relied upon different variables, good performance prediction will be achieved by ANFIS systems. ► Intelligent systems are used to predict the performance of the membrane process. ► We focus on performance evaluation by optimizing rejection factor and permeate flux. ► We overcome the complexity of input and output dependency by different structures. ► Intelligent system results show good adaption however the ANFIS fit more suitable.</description><identifier>ISSN: 0011-9164</identifier><identifier>EISSN: 1873-4464</identifier><identifier>DOI: 10.1016/j.desal.2011.08.041</identifier><identifier>CODEN: DSLNAH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptive neuro-fuzzy inference system (ANFIS) ; Applied sciences ; artificial intelligence ; Artificial neural networks ; Back propagation ; Backpropagation neural network (BPNN) ; Computer simulation ; desalination ; Exact sciences and technology ; Flux ; fuzzy logic ; General purification processes ; Inference ; Membrane ; Membranes ; neural networks ; neurons ; Pollution ; prediction ; Radial basis function (RBF) ; Rejection ; Simulation ; starch ; temperature ; Waste water ; wastewater ; Wastewaters ; Water treatment and pollution</subject><ispartof>Desalination, 2012-01, Vol.284 (4), p.92-99</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-72ccee91123c7300b2037a6249642254435a2c99d51a6d0d886916785f7b1e803</citedby><cites>FETCH-LOGICAL-c422t-72ccee91123c7300b2037a6249642254435a2c99d51a6d0d886916785f7b1e803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.desal.2011.08.041$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25499437$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sargolzaei, J.</creatorcontrib><creatorcontrib>Haghighi Asl, M.</creatorcontrib><creatorcontrib>Hedayati Moghaddam, A.</creatorcontrib><title>Membrane permeate flux and rejection factor prediction using intelligent systems</title><title>Desalination</title><description>Backpropagation artificial neural network (BPNN), radial basis function (RBF) and adaptive neuro-fuzzy inference system (ANFIS) were utilized to predict starch removal performance from starchy wastewater using a hydrophilic polyethersulfone membrane with 0.65 μm pore size in a plate and frame homemade membrane module. Our study focuses on evaluation of membrane performance by optimum condition determination of operative parameters which affect the COD removal percentage and permeate flux. In this experiment, a four input vector was surveyed, including flow and temperature of feed, pH and concentration of permeate. In BPNN the number of neurons in the hidden layers needs to be chosen carefully to obtain a reliable network while choosing this structure is very time consuming. The best BPNN performance was obtained with 4 hidden layers for permeation and rejection factor prediction for BPNN. ANFIS and RBF simulations have also been used for comparison with BPNN. The results show a good agreement however the ANFIS prediction was better than two other simulation methods. In the basis of comparison between obtained results in this research, it may be an appropriate interpretation that for those chemical processes with performance which relied upon different variables, good performance prediction will be achieved by ANFIS systems. ► Intelligent systems are used to predict the performance of the membrane process. ► We focus on performance evaluation by optimizing rejection factor and permeate flux. ► We overcome the complexity of input and output dependency by different structures. ► Intelligent system results show good adaption however the ANFIS fit more suitable.</description><subject>Adaptive neuro-fuzzy inference system (ANFIS)</subject><subject>Applied sciences</subject><subject>artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Backpropagation neural network (BPNN)</subject><subject>Computer simulation</subject><subject>desalination</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>fuzzy logic</subject><subject>General purification processes</subject><subject>Inference</subject><subject>Membrane</subject><subject>Membranes</subject><subject>neural networks</subject><subject>neurons</subject><subject>Pollution</subject><subject>prediction</subject><subject>Radial basis function (RBF)</subject><subject>Rejection</subject><subject>Simulation</subject><subject>starch</subject><subject>temperature</subject><subject>Waste water</subject><subject>wastewater</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>0011-9164</issn><issn>1873-4464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAQgC0EEkvhF3AgFwSXpDO2k9gHDqiCFqkVlaBny-tMVl7lsdjZiv77zpKKY0-WPd-8PgvxHqFCwOZ8X3WU_VBJQKzAVKDxhdigaVWpdaNfig1wpLTY6NfiTc57vkqr1Ebc3tC4TX6i4kBpJL9Q0Q_Hv4WfuiLRnsIS56nofVjmVBwSdXF9OeY47Yo4LTQMcUfTUuSHvNCY34pXvR8yvXs6z8Td92-_L67K65-XPy6-XpdBS7mUrQyByCJKFVoFsJWgWt9IbRuO11qr2stgbVejbzrojGl4-tbUfbtFMqDOxKe17iHNf46UFzfGHHga3mU-Zmex1lZZo5j8_CzJZVEbJREZVSsa0pxzot4dUhx9enAI7mTa7d0_0-5k2oFxbJqzPj418Dn4oWedIeb_qbyNtVq1zH1Yud7Pzu8SM3e_uFANABbq9kR8WQlic_eRkssh0hRYe-KvcN0cn53kEdUnnPE</recordid><startdate>20120104</startdate><enddate>20120104</enddate><creator>Sargolzaei, J.</creator><creator>Haghighi Asl, M.</creator><creator>Hedayati Moghaddam, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20120104</creationdate><title>Membrane permeate flux and rejection factor prediction using intelligent systems</title><author>Sargolzaei, J. ; Haghighi Asl, M. ; Hedayati Moghaddam, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-72ccee91123c7300b2037a6249642254435a2c99d51a6d0d886916785f7b1e803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive neuro-fuzzy inference system (ANFIS)</topic><topic>Applied sciences</topic><topic>artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Backpropagation neural network (BPNN)</topic><topic>Computer simulation</topic><topic>desalination</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>fuzzy logic</topic><topic>General purification processes</topic><topic>Inference</topic><topic>Membrane</topic><topic>Membranes</topic><topic>neural networks</topic><topic>neurons</topic><topic>Pollution</topic><topic>prediction</topic><topic>Radial basis function (RBF)</topic><topic>Rejection</topic><topic>Simulation</topic><topic>starch</topic><topic>temperature</topic><topic>Waste water</topic><topic>wastewater</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sargolzaei, J.</creatorcontrib><creatorcontrib>Haghighi Asl, M.</creatorcontrib><creatorcontrib>Hedayati Moghaddam, A.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Desalination</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sargolzaei, J.</au><au>Haghighi Asl, M.</au><au>Hedayati Moghaddam, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Membrane permeate flux and rejection factor prediction using intelligent systems</atitle><jtitle>Desalination</jtitle><date>2012-01-04</date><risdate>2012</risdate><volume>284</volume><issue>4</issue><spage>92</spage><epage>99</epage><pages>92-99</pages><issn>0011-9164</issn><eissn>1873-4464</eissn><coden>DSLNAH</coden><abstract>Backpropagation artificial neural network (BPNN), radial basis function (RBF) and adaptive neuro-fuzzy inference system (ANFIS) were utilized to predict starch removal performance from starchy wastewater using a hydrophilic polyethersulfone membrane with 0.65 μm pore size in a plate and frame homemade membrane module. Our study focuses on evaluation of membrane performance by optimum condition determination of operative parameters which affect the COD removal percentage and permeate flux. In this experiment, a four input vector was surveyed, including flow and temperature of feed, pH and concentration of permeate. In BPNN the number of neurons in the hidden layers needs to be chosen carefully to obtain a reliable network while choosing this structure is very time consuming. The best BPNN performance was obtained with 4 hidden layers for permeation and rejection factor prediction for BPNN. ANFIS and RBF simulations have also been used for comparison with BPNN. The results show a good agreement however the ANFIS prediction was better than two other simulation methods. In the basis of comparison between obtained results in this research, it may be an appropriate interpretation that for those chemical processes with performance which relied upon different variables, good performance prediction will be achieved by ANFIS systems. ► Intelligent systems are used to predict the performance of the membrane process. ► We focus on performance evaluation by optimizing rejection factor and permeate flux. ► We overcome the complexity of input and output dependency by different structures. ► Intelligent system results show good adaption however the ANFIS fit more suitable.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.desal.2011.08.041</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-9164
ispartof Desalination, 2012-01, Vol.284 (4), p.92-99
issn 0011-9164
1873-4464
language eng
recordid cdi_proquest_miscellaneous_915493983
source ScienceDirect Journals (5 years ago - present)
subjects Adaptive neuro-fuzzy inference system (ANFIS)
Applied sciences
artificial intelligence
Artificial neural networks
Back propagation
Backpropagation neural network (BPNN)
Computer simulation
desalination
Exact sciences and technology
Flux
fuzzy logic
General purification processes
Inference
Membrane
Membranes
neural networks
neurons
Pollution
prediction
Radial basis function (RBF)
Rejection
Simulation
starch
temperature
Waste water
wastewater
Wastewaters
Water treatment and pollution
title Membrane permeate flux and rejection factor prediction using intelligent systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A45%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Membrane%20permeate%20flux%20and%20rejection%20factor%20prediction%20using%20intelligent%20systems&rft.jtitle=Desalination&rft.au=Sargolzaei,%20J.&rft.date=2012-01-04&rft.volume=284&rft.issue=4&rft.spage=92&rft.epage=99&rft.pages=92-99&rft.issn=0011-9164&rft.eissn=1873-4464&rft.coden=DSLNAH&rft_id=info:doi/10.1016/j.desal.2011.08.041&rft_dat=%3Cproquest_cross%3E1671483211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671483211&rft_id=info:pmid/&rft_els_id=S0011916411007430&rfr_iscdi=true