Targeted metabolic reconstruction: a novel approach for the characterization of plant-pathogen interactions

Genome-scale metabolic reconstruction (GEMR), along with flux balance analysis, has been widely used to study complex metabolic networks in several microbial organisms. This approach is of particular applicability in biological systems where the lack of kinetics data is typical. This is the case of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2011-03, Vol.12 (2), p.151-162
Hauptverfasser: PINZON, Andrés, RODRIGUEZ-R, Luis M, GONZALEZ, Andrés, BERNAL, Adriana, RESTREPO, Silvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue 2
container_start_page 151
container_title Briefings in bioinformatics
container_volume 12
creator PINZON, Andrés
RODRIGUEZ-R, Luis M
GONZALEZ, Andrés
BERNAL, Adriana
RESTREPO, Silvia
description Genome-scale metabolic reconstruction (GEMR), along with flux balance analysis, has been widely used to study complex metabolic networks in several microbial organisms. This approach is of particular applicability in biological systems where the lack of kinetics data is typical. This is the case of plant-pathogen interactions, where these methods open the possibility of studying host metabolic network phenotype during the interaction with pathogens. Since GEMRs are based on sequenced genomes, its applicability to organisms where genomic information is lacking is limited. Here we describe an alternative approach to GEMR: targeted metabolic reconstruction, where network reconstruction is guided by transcriptomic data instead of genomic information. This approach is being applied successfully in our laboratory for the Phytophthora infestans--Solanum tuberosum pathosystem.
doi_str_mv 10.1093/bib/bbq009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_915490799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>858283228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-81b1c7715ef6808bc2af09d89380de502f99a974adcb99cc3cb6d6972544e04f3</originalsourceid><addsrcrecordid>eNqF0UFrFDEUB_AgFltXL34ACYIIwthkkkwSb1KsFgpe6nl4eZN0p85OpklGqJ_erLsqePEQEsiPP-_xJ-QFZ-84s-Lcje7cuXvG7CNyxqXWjWRKPt6_O90o2YlT8jTnO8Zapg1_Qk5bJpSwHT8j324g3friB7rzBVycRqTJY5xzSSuWMc7vKdA5fvcThWVJEXBLQ0y0bD3FLSTA4tP4A_aUxkCXCebSLFC28dbPdJzrN_wKys_ISYAp--fHe0O-Xn68ufjcXH_5dHXx4bpByXlpDHcctebKh84w47CFwOxgrDBs8Iq1wVqwWsKAzlpEga4bOqtbJaVnMogNeXPIrePerz6Xfjdm9FOdzMc195YraZm29r_SKNMa0dazIa_-kXdxTXNdoyJrOqOVrOjtAWGKOScf-iWNO0gPPWf9vqq-VtUfqqr45TFxdTs__KG_u6ng9RFARphCghnH_NdVpLRpxU9MV53n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>859868754</pqid></control><display><type>article</type><title>Targeted metabolic reconstruction: a novel approach for the characterization of plant-pathogen interactions</title><source>MEDLINE</source><source>EBSCOhost Business Source Complete</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>PINZON, Andrés ; RODRIGUEZ-R, Luis M ; GONZALEZ, Andrés ; BERNAL, Adriana ; RESTREPO, Silvia</creator><creatorcontrib>PINZON, Andrés ; RODRIGUEZ-R, Luis M ; GONZALEZ, Andrés ; BERNAL, Adriana ; RESTREPO, Silvia</creatorcontrib><description>Genome-scale metabolic reconstruction (GEMR), along with flux balance analysis, has been widely used to study complex metabolic networks in several microbial organisms. This approach is of particular applicability in biological systems where the lack of kinetics data is typical. This is the case of plant-pathogen interactions, where these methods open the possibility of studying host metabolic network phenotype during the interaction with pathogens. Since GEMRs are based on sequenced genomes, its applicability to organisms where genomic information is lacking is limited. Here we describe an alternative approach to GEMR: targeted metabolic reconstruction, where network reconstruction is guided by transcriptomic data instead of genomic information. This approach is being applied successfully in our laboratory for the Phytophthora infestans--Solanum tuberosum pathosystem.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbq009</identifier><identifier>PMID: 20353961</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Bioinformatics ; Biological and medical sciences ; Computational Biology - methods ; Flowers &amp; plants ; Fundamental and applied biological sciences. Psychology ; General aspects ; Genetically altered foods ; Genome ; Genomes ; Genomics ; Host-Parasite Interactions ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Metabolic Networks and Pathways ; Metabolism ; Pathogens ; Phytophthora ; Phytophthora infestans - pathogenicity ; Plant Diseases - parasitology ; Solanum tuberosum - parasitology</subject><ispartof>Briefings in bioinformatics, 2011-03, Vol.12 (2), p.151-162</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright Oxford Publishing Limited(England) Mar 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-81b1c7715ef6808bc2af09d89380de502f99a974adcb99cc3cb6d6972544e04f3</citedby><cites>FETCH-LOGICAL-c411t-81b1c7715ef6808bc2af09d89380de502f99a974adcb99cc3cb6d6972544e04f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23965782$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20353961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>PINZON, Andrés</creatorcontrib><creatorcontrib>RODRIGUEZ-R, Luis M</creatorcontrib><creatorcontrib>GONZALEZ, Andrés</creatorcontrib><creatorcontrib>BERNAL, Adriana</creatorcontrib><creatorcontrib>RESTREPO, Silvia</creatorcontrib><title>Targeted metabolic reconstruction: a novel approach for the characterization of plant-pathogen interactions</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Genome-scale metabolic reconstruction (GEMR), along with flux balance analysis, has been widely used to study complex metabolic networks in several microbial organisms. This approach is of particular applicability in biological systems where the lack of kinetics data is typical. This is the case of plant-pathogen interactions, where these methods open the possibility of studying host metabolic network phenotype during the interaction with pathogens. Since GEMRs are based on sequenced genomes, its applicability to organisms where genomic information is lacking is limited. Here we describe an alternative approach to GEMR: targeted metabolic reconstruction, where network reconstruction is guided by transcriptomic data instead of genomic information. This approach is being applied successfully in our laboratory for the Phytophthora infestans--Solanum tuberosum pathosystem.</description><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Computational Biology - methods</subject><subject>Flowers &amp; plants</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Genetically altered foods</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Host-Parasite Interactions</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>Pathogens</subject><subject>Phytophthora</subject><subject>Phytophthora infestans - pathogenicity</subject><subject>Plant Diseases - parasitology</subject><subject>Solanum tuberosum - parasitology</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0UFrFDEUB_AgFltXL34ACYIIwthkkkwSb1KsFgpe6nl4eZN0p85OpklGqJ_erLsqePEQEsiPP-_xJ-QFZ-84s-Lcje7cuXvG7CNyxqXWjWRKPt6_O90o2YlT8jTnO8Zapg1_Qk5bJpSwHT8j324g3friB7rzBVycRqTJY5xzSSuWMc7vKdA5fvcThWVJEXBLQ0y0bD3FLSTA4tP4A_aUxkCXCebSLFC28dbPdJzrN_wKys_ISYAp--fHe0O-Xn68ufjcXH_5dHXx4bpByXlpDHcctebKh84w47CFwOxgrDBs8Iq1wVqwWsKAzlpEga4bOqtbJaVnMogNeXPIrePerz6Xfjdm9FOdzMc195YraZm29r_SKNMa0dazIa_-kXdxTXNdoyJrOqOVrOjtAWGKOScf-iWNO0gPPWf9vqq-VtUfqqr45TFxdTs__KG_u6ng9RFARphCghnH_NdVpLRpxU9MV53n</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>PINZON, Andrés</creator><creator>RODRIGUEZ-R, Luis M</creator><creator>GONZALEZ, Andrés</creator><creator>BERNAL, Adriana</creator><creator>RESTREPO, Silvia</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20110301</creationdate><title>Targeted metabolic reconstruction: a novel approach for the characterization of plant-pathogen interactions</title><author>PINZON, Andrés ; RODRIGUEZ-R, Luis M ; GONZALEZ, Andrés ; BERNAL, Adriana ; RESTREPO, Silvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-81b1c7715ef6808bc2af09d89380de502f99a974adcb99cc3cb6d6972544e04f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Computational Biology - methods</topic><topic>Flowers &amp; plants</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Genetically altered foods</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Host-Parasite Interactions</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>Pathogens</topic><topic>Phytophthora</topic><topic>Phytophthora infestans - pathogenicity</topic><topic>Plant Diseases - parasitology</topic><topic>Solanum tuberosum - parasitology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PINZON, Andrés</creatorcontrib><creatorcontrib>RODRIGUEZ-R, Luis M</creatorcontrib><creatorcontrib>GONZALEZ, Andrés</creatorcontrib><creatorcontrib>BERNAL, Adriana</creatorcontrib><creatorcontrib>RESTREPO, Silvia</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PINZON, Andrés</au><au>RODRIGUEZ-R, Luis M</au><au>GONZALEZ, Andrés</au><au>BERNAL, Adriana</au><au>RESTREPO, Silvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted metabolic reconstruction: a novel approach for the characterization of plant-pathogen interactions</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>12</volume><issue>2</issue><spage>151</spage><epage>162</epage><pages>151-162</pages><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Genome-scale metabolic reconstruction (GEMR), along with flux balance analysis, has been widely used to study complex metabolic networks in several microbial organisms. This approach is of particular applicability in biological systems where the lack of kinetics data is typical. This is the case of plant-pathogen interactions, where these methods open the possibility of studying host metabolic network phenotype during the interaction with pathogens. Since GEMRs are based on sequenced genomes, its applicability to organisms where genomic information is lacking is limited. Here we describe an alternative approach to GEMR: targeted metabolic reconstruction, where network reconstruction is guided by transcriptomic data instead of genomic information. This approach is being applied successfully in our laboratory for the Phytophthora infestans--Solanum tuberosum pathosystem.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>20353961</pmid><doi>10.1093/bib/bbq009</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2011-03, Vol.12 (2), p.151-162
issn 1467-5463
1477-4054
language eng
recordid cdi_proquest_miscellaneous_915490799
source MEDLINE; EBSCOhost Business Source Complete; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Bioinformatics
Biological and medical sciences
Computational Biology - methods
Flowers & plants
Fundamental and applied biological sciences. Psychology
General aspects
Genetically altered foods
Genome
Genomes
Genomics
Host-Parasite Interactions
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Metabolic Networks and Pathways
Metabolism
Pathogens
Phytophthora
Phytophthora infestans - pathogenicity
Plant Diseases - parasitology
Solanum tuberosum - parasitology
title Targeted metabolic reconstruction: a novel approach for the characterization of plant-pathogen interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A31%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20metabolic%20reconstruction:%20a%20novel%20approach%20for%20the%20characterization%20of%20plant-pathogen%20interactions&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=PINZON,%20Andr%C3%A9s&rft.date=2011-03-01&rft.volume=12&rft.issue=2&rft.spage=151&rft.epage=162&rft.pages=151-162&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbq009&rft_dat=%3Cproquest_cross%3E858283228%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=859868754&rft_id=info:pmid/20353961&rfr_iscdi=true