Silencing synaptic communication between random interneurons during Drosophila larval locomotion

Genetic manipulation of individual neurons provides a powerful approach toward understanding their contribution to stereotypic behaviors. We describe and evaluate a method for identifying candidate interneurons and associated neuropile compartments that mediate Drosophila larval locomotion. We creat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes, brain and behavior brain and behavior, 2011-11, Vol.10 (8), p.883-900
Hauptverfasser: Iyengar, B. G., Chou, C. Jennifer, Vandamme, K. M., Klose, M. K., Zhao, X., Akhtar‐Danesh, N., Campos, A. R., Atwood, H. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 900
container_issue 8
container_start_page 883
container_title Genes, brain and behavior
container_volume 10
creator Iyengar, B. G.
Chou, C. Jennifer
Vandamme, K. M.
Klose, M. K.
Zhao, X.
Akhtar‐Danesh, N.
Campos, A. R.
Atwood, H. L.
description Genetic manipulation of individual neurons provides a powerful approach toward understanding their contribution to stereotypic behaviors. We describe and evaluate a method for identifying candidate interneurons and associated neuropile compartments that mediate Drosophila larval locomotion. We created Drosophila larvae that express green fluorescent protein (GFP) and a shibirets1 (shits1) transgene (a temperature‐sensitive neuronal silencer) in small numbers of randomly selected cholinergic neurons. These larvae were screened for aberrant behavior at an elevated temperature (31–32°C). Among larvae with abnormal locomotion or sensory‐motor responses, some had very small numbers of GFP‐labeled temperature‐sensitive interneurons. Labeled ascending interneurons projecting from the abdominal ganglia to specific brain neuropile compartments emerged as candidates for mediation of larval locomotion. Random targeting of small sets of neurons for functional evaluation, together with anatomical mapping of their processes, provides a tool for identifying the regions of the central nervous system that are required for normal locomotion. We discuss the limitations and advantages of this approach to discovery of interneurons that regulate motor behavior.
doi_str_mv 10.1111/j.1601-183X.2011.00729.x
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_915485982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>915485982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4279-6366ae316c784972f816b086bbe9c0adb71824d0d8919161465a621616c06eb83</originalsourceid><addsrcrecordid>eNqNkUtPxCAYRYnR-P4LhsSFq6l8fVBI3PjWxMSFmrhDShll0sIIrc78e6kzzsKNsuFLOPcSOAhhIAnEdTxJgBIYAcuek5QAJISUKU9ma2h7dbC-mnO2hXZCmBACZcZgE22lwHjBy3wbvTyYRltl7CsOcyunnVFYubbtrVGyM87iSnefWlvspa1di43ttLe6984GXPd-SF54F9z0zTQSN9J_yAY3Lpa4Ib-HNsayCXp_ue-ip6vLx_Ob0d399e356d1I5WnJRzSjVOoMqCpZzst0zIBWhNGq0lwRWVclsDSvSc04cKCQ00LSNA5UEaorlu2io0Xv1Lv3XodOtCYo3TTSatcHwaHIWcFZ-jdJsljPSRnJw1_kxPXexmcIyDijBeOMRIotKBW_IXg9FlNvWunnAogYdImJGEyIwYoYdIlvXWIWowfLC_qq1fUq-OMnAicL4DNqmv-7WFyfncUh-wLFgKOV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1398658980</pqid></control><display><type>article</type><title>Silencing synaptic communication between random interneurons during Drosophila larval locomotion</title><source>Wiley Online Library Open Access</source><creator>Iyengar, B. G. ; Chou, C. Jennifer ; Vandamme, K. M. ; Klose, M. K. ; Zhao, X. ; Akhtar‐Danesh, N. ; Campos, A. R. ; Atwood, H. L.</creator><creatorcontrib>Iyengar, B. G. ; Chou, C. Jennifer ; Vandamme, K. M. ; Klose, M. K. ; Zhao, X. ; Akhtar‐Danesh, N. ; Campos, A. R. ; Atwood, H. L.</creatorcontrib><description>Genetic manipulation of individual neurons provides a powerful approach toward understanding their contribution to stereotypic behaviors. We describe and evaluate a method for identifying candidate interneurons and associated neuropile compartments that mediate Drosophila larval locomotion. We created Drosophila larvae that express green fluorescent protein (GFP) and a shibirets1 (shits1) transgene (a temperature‐sensitive neuronal silencer) in small numbers of randomly selected cholinergic neurons. These larvae were screened for aberrant behavior at an elevated temperature (31–32°C). Among larvae with abnormal locomotion or sensory‐motor responses, some had very small numbers of GFP‐labeled temperature‐sensitive interneurons. Labeled ascending interneurons projecting from the abdominal ganglia to specific brain neuropile compartments emerged as candidates for mediation of larval locomotion. Random targeting of small sets of neurons for functional evaluation, together with anatomical mapping of their processes, provides a tool for identifying the regions of the central nervous system that are required for normal locomotion. We discuss the limitations and advantages of this approach to discovery of interneurons that regulate motor behavior.</description><identifier>ISSN: 1601-1848</identifier><identifier>EISSN: 1601-183X</identifier><identifier>DOI: 10.1111/j.1601-183X.2011.00729.x</identifier><identifier>PMID: 21895974</identifier><identifier>CODEN: GBBEAO</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Animals, Genetically Modified ; Behavior, Animal - physiology ; Brain ; Central nervous system ; Central Nervous System - physiology ; Cholinergic nerves ; Communication ; Critical interneurons ; Drosophila ; Drosophila larval nervous system ; Drosophila melanogaster ; Electrophysiological Phenomena ; Ganglia ; Gene Expression Regulation ; Gene Expression Regulation, Developmental ; Gene mapping ; Genetic Markers ; GFP ; Green fluorescent protein ; Green Fluorescent Proteins ; Immunohistochemistry ; Interneurons ; Interneurons - physiology ; Larva ; Light ; Locomotion ; Locomotion - physiology ; MARCM ; Movement ; Neuropil - physiology ; neuropile compartments ; shibire ts1 ; Stereotyped behavior ; Synapses - physiology ; Temperature ; Temperature effects ; Transgenes</subject><ispartof>Genes, brain and behavior, 2011-11, Vol.10 (8), p.883-900</ispartof><rights>2011 The Authors. Genes, Brain and Behavior © 2011 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society</rights><rights>2011 The Authors. Genes, Brain and Behavior © 2011 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4279-6366ae316c784972f816b086bbe9c0adb71824d0d8919161465a621616c06eb83</citedby><cites>FETCH-LOGICAL-c4279-6366ae316c784972f816b086bbe9c0adb71824d0d8919161465a621616c06eb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1601-183X.2011.00729.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1601-183X.2011.00729.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1601-183X.2011.00729.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21895974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iyengar, B. G.</creatorcontrib><creatorcontrib>Chou, C. Jennifer</creatorcontrib><creatorcontrib>Vandamme, K. M.</creatorcontrib><creatorcontrib>Klose, M. K.</creatorcontrib><creatorcontrib>Zhao, X.</creatorcontrib><creatorcontrib>Akhtar‐Danesh, N.</creatorcontrib><creatorcontrib>Campos, A. R.</creatorcontrib><creatorcontrib>Atwood, H. L.</creatorcontrib><title>Silencing synaptic communication between random interneurons during Drosophila larval locomotion</title><title>Genes, brain and behavior</title><addtitle>Genes Brain Behav</addtitle><description>Genetic manipulation of individual neurons provides a powerful approach toward understanding their contribution to stereotypic behaviors. We describe and evaluate a method for identifying candidate interneurons and associated neuropile compartments that mediate Drosophila larval locomotion. We created Drosophila larvae that express green fluorescent protein (GFP) and a shibirets1 (shits1) transgene (a temperature‐sensitive neuronal silencer) in small numbers of randomly selected cholinergic neurons. These larvae were screened for aberrant behavior at an elevated temperature (31–32°C). Among larvae with abnormal locomotion or sensory‐motor responses, some had very small numbers of GFP‐labeled temperature‐sensitive interneurons. Labeled ascending interneurons projecting from the abdominal ganglia to specific brain neuropile compartments emerged as candidates for mediation of larval locomotion. Random targeting of small sets of neurons for functional evaluation, together with anatomical mapping of their processes, provides a tool for identifying the regions of the central nervous system that are required for normal locomotion. We discuss the limitations and advantages of this approach to discovery of interneurons that regulate motor behavior.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Behavior, Animal - physiology</subject><subject>Brain</subject><subject>Central nervous system</subject><subject>Central Nervous System - physiology</subject><subject>Cholinergic nerves</subject><subject>Communication</subject><subject>Critical interneurons</subject><subject>Drosophila</subject><subject>Drosophila larval nervous system</subject><subject>Drosophila melanogaster</subject><subject>Electrophysiological Phenomena</subject><subject>Ganglia</subject><subject>Gene Expression Regulation</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene mapping</subject><subject>Genetic Markers</subject><subject>GFP</subject><subject>Green fluorescent protein</subject><subject>Green Fluorescent Proteins</subject><subject>Immunohistochemistry</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Larva</subject><subject>Light</subject><subject>Locomotion</subject><subject>Locomotion - physiology</subject><subject>MARCM</subject><subject>Movement</subject><subject>Neuropil - physiology</subject><subject>neuropile compartments</subject><subject>shibire ts1</subject><subject>Stereotyped behavior</subject><subject>Synapses - physiology</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Transgenes</subject><issn>1601-1848</issn><issn>1601-183X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtPxCAYRYnR-P4LhsSFq6l8fVBI3PjWxMSFmrhDShll0sIIrc78e6kzzsKNsuFLOPcSOAhhIAnEdTxJgBIYAcuek5QAJISUKU9ma2h7dbC-mnO2hXZCmBACZcZgE22lwHjBy3wbvTyYRltl7CsOcyunnVFYubbtrVGyM87iSnefWlvspa1di43ttLe6984GXPd-SF54F9z0zTQSN9J_yAY3Lpa4Ib-HNsayCXp_ue-ip6vLx_Ob0d399e356d1I5WnJRzSjVOoMqCpZzst0zIBWhNGq0lwRWVclsDSvSc04cKCQ00LSNA5UEaorlu2io0Xv1Lv3XodOtCYo3TTSatcHwaHIWcFZ-jdJsljPSRnJw1_kxPXexmcIyDijBeOMRIotKBW_IXg9FlNvWunnAogYdImJGEyIwYoYdIlvXWIWowfLC_qq1fUq-OMnAicL4DNqmv-7WFyfncUh-wLFgKOV</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Iyengar, B. G.</creator><creator>Chou, C. Jennifer</creator><creator>Vandamme, K. M.</creator><creator>Klose, M. K.</creator><creator>Zhao, X.</creator><creator>Akhtar‐Danesh, N.</creator><creator>Campos, A. R.</creator><creator>Atwood, H. L.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7SS</scope></search><sort><creationdate>201111</creationdate><title>Silencing synaptic communication between random interneurons during Drosophila larval locomotion</title><author>Iyengar, B. G. ; Chou, C. Jennifer ; Vandamme, K. M. ; Klose, M. K. ; Zhao, X. ; Akhtar‐Danesh, N. ; Campos, A. R. ; Atwood, H. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4279-6366ae316c784972f816b086bbe9c0adb71824d0d8919161465a621616c06eb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Behavior, Animal - physiology</topic><topic>Brain</topic><topic>Central nervous system</topic><topic>Central Nervous System - physiology</topic><topic>Cholinergic nerves</topic><topic>Communication</topic><topic>Critical interneurons</topic><topic>Drosophila</topic><topic>Drosophila larval nervous system</topic><topic>Drosophila melanogaster</topic><topic>Electrophysiological Phenomena</topic><topic>Ganglia</topic><topic>Gene Expression Regulation</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene mapping</topic><topic>Genetic Markers</topic><topic>GFP</topic><topic>Green fluorescent protein</topic><topic>Green Fluorescent Proteins</topic><topic>Immunohistochemistry</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Larva</topic><topic>Light</topic><topic>Locomotion</topic><topic>Locomotion - physiology</topic><topic>MARCM</topic><topic>Movement</topic><topic>Neuropil - physiology</topic><topic>neuropile compartments</topic><topic>shibire ts1</topic><topic>Stereotyped behavior</topic><topic>Synapses - physiology</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iyengar, B. G.</creatorcontrib><creatorcontrib>Chou, C. Jennifer</creatorcontrib><creatorcontrib>Vandamme, K. M.</creatorcontrib><creatorcontrib>Klose, M. K.</creatorcontrib><creatorcontrib>Zhao, X.</creatorcontrib><creatorcontrib>Akhtar‐Danesh, N.</creatorcontrib><creatorcontrib>Campos, A. R.</creatorcontrib><creatorcontrib>Atwood, H. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Entomology Abstracts (Full archive)</collection><jtitle>Genes, brain and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iyengar, B. G.</au><au>Chou, C. Jennifer</au><au>Vandamme, K. M.</au><au>Klose, M. K.</au><au>Zhao, X.</au><au>Akhtar‐Danesh, N.</au><au>Campos, A. R.</au><au>Atwood, H. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silencing synaptic communication between random interneurons during Drosophila larval locomotion</atitle><jtitle>Genes, brain and behavior</jtitle><addtitle>Genes Brain Behav</addtitle><date>2011-11</date><risdate>2011</risdate><volume>10</volume><issue>8</issue><spage>883</spage><epage>900</epage><pages>883-900</pages><issn>1601-1848</issn><eissn>1601-183X</eissn><coden>GBBEAO</coden><abstract>Genetic manipulation of individual neurons provides a powerful approach toward understanding their contribution to stereotypic behaviors. We describe and evaluate a method for identifying candidate interneurons and associated neuropile compartments that mediate Drosophila larval locomotion. We created Drosophila larvae that express green fluorescent protein (GFP) and a shibirets1 (shits1) transgene (a temperature‐sensitive neuronal silencer) in small numbers of randomly selected cholinergic neurons. These larvae were screened for aberrant behavior at an elevated temperature (31–32°C). Among larvae with abnormal locomotion or sensory‐motor responses, some had very small numbers of GFP‐labeled temperature‐sensitive interneurons. Labeled ascending interneurons projecting from the abdominal ganglia to specific brain neuropile compartments emerged as candidates for mediation of larval locomotion. Random targeting of small sets of neurons for functional evaluation, together with anatomical mapping of their processes, provides a tool for identifying the regions of the central nervous system that are required for normal locomotion. We discuss the limitations and advantages of this approach to discovery of interneurons that regulate motor behavior.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21895974</pmid><doi>10.1111/j.1601-183X.2011.00729.x</doi><tpages>18</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1601-1848
ispartof Genes, brain and behavior, 2011-11, Vol.10 (8), p.883-900
issn 1601-1848
1601-183X
language eng
recordid cdi_proquest_miscellaneous_915485982
source Wiley Online Library Open Access
subjects Animals
Animals, Genetically Modified
Behavior, Animal - physiology
Brain
Central nervous system
Central Nervous System - physiology
Cholinergic nerves
Communication
Critical interneurons
Drosophila
Drosophila larval nervous system
Drosophila melanogaster
Electrophysiological Phenomena
Ganglia
Gene Expression Regulation
Gene Expression Regulation, Developmental
Gene mapping
Genetic Markers
GFP
Green fluorescent protein
Green Fluorescent Proteins
Immunohistochemistry
Interneurons
Interneurons - physiology
Larva
Light
Locomotion
Locomotion - physiology
MARCM
Movement
Neuropil - physiology
neuropile compartments
shibire ts1
Stereotyped behavior
Synapses - physiology
Temperature
Temperature effects
Transgenes
title Silencing synaptic communication between random interneurons during Drosophila larval locomotion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silencing%20synaptic%20communication%20between%20random%20interneurons%20during%20Drosophila%20larval%20locomotion&rft.jtitle=Genes,%20brain%20and%20behavior&rft.au=Iyengar,%20B.%20G.&rft.date=2011-11&rft.volume=10&rft.issue=8&rft.spage=883&rft.epage=900&rft.pages=883-900&rft.issn=1601-1848&rft.eissn=1601-183X&rft.coden=GBBEAO&rft_id=info:doi/10.1111/j.1601-183X.2011.00729.x&rft_dat=%3Cproquest_24P%3E915485982%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1398658980&rft_id=info:pmid/21895974&rfr_iscdi=true