Silencing synaptic communication between random interneurons during Drosophila larval locomotion
Genetic manipulation of individual neurons provides a powerful approach toward understanding their contribution to stereotypic behaviors. We describe and evaluate a method for identifying candidate interneurons and associated neuropile compartments that mediate Drosophila larval locomotion. We creat...
Gespeichert in:
Veröffentlicht in: | Genes, brain and behavior brain and behavior, 2011-11, Vol.10 (8), p.883-900 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 900 |
---|---|
container_issue | 8 |
container_start_page | 883 |
container_title | Genes, brain and behavior |
container_volume | 10 |
creator | Iyengar, B. G. Chou, C. Jennifer Vandamme, K. M. Klose, M. K. Zhao, X. Akhtar‐Danesh, N. Campos, A. R. Atwood, H. L. |
description | Genetic manipulation of individual neurons provides a powerful approach toward understanding their contribution to stereotypic behaviors. We describe and evaluate a method for identifying candidate interneurons and associated neuropile compartments that mediate Drosophila larval locomotion. We created Drosophila larvae that express green fluorescent protein (GFP) and a shibirets1 (shits1) transgene (a temperature‐sensitive neuronal silencer) in small numbers of randomly selected cholinergic neurons. These larvae were screened for aberrant behavior at an elevated temperature (31–32°C). Among larvae with abnormal locomotion or sensory‐motor responses, some had very small numbers of GFP‐labeled temperature‐sensitive interneurons. Labeled ascending interneurons projecting from the abdominal ganglia to specific brain neuropile compartments emerged as candidates for mediation of larval locomotion. Random targeting of small sets of neurons for functional evaluation, together with anatomical mapping of their processes, provides a tool for identifying the regions of the central nervous system that are required for normal locomotion. We discuss the limitations and advantages of this approach to discovery of interneurons that regulate motor behavior. |
doi_str_mv | 10.1111/j.1601-183X.2011.00729.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_915485982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>915485982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4279-6366ae316c784972f816b086bbe9c0adb71824d0d8919161465a621616c06eb83</originalsourceid><addsrcrecordid>eNqNkUtPxCAYRYnR-P4LhsSFq6l8fVBI3PjWxMSFmrhDShll0sIIrc78e6kzzsKNsuFLOPcSOAhhIAnEdTxJgBIYAcuek5QAJISUKU9ma2h7dbC-mnO2hXZCmBACZcZgE22lwHjBy3wbvTyYRltl7CsOcyunnVFYubbtrVGyM87iSnefWlvspa1di43ttLe6984GXPd-SF54F9z0zTQSN9J_yAY3Lpa4Ib-HNsayCXp_ue-ip6vLx_Ob0d399e356d1I5WnJRzSjVOoMqCpZzst0zIBWhNGq0lwRWVclsDSvSc04cKCQ00LSNA5UEaorlu2io0Xv1Lv3XodOtCYo3TTSatcHwaHIWcFZ-jdJsljPSRnJw1_kxPXexmcIyDijBeOMRIotKBW_IXg9FlNvWunnAogYdImJGEyIwYoYdIlvXWIWowfLC_qq1fUq-OMnAicL4DNqmv-7WFyfncUh-wLFgKOV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1398658980</pqid></control><display><type>article</type><title>Silencing synaptic communication between random interneurons during Drosophila larval locomotion</title><source>Wiley Online Library Open Access</source><creator>Iyengar, B. G. ; Chou, C. Jennifer ; Vandamme, K. M. ; Klose, M. K. ; Zhao, X. ; Akhtar‐Danesh, N. ; Campos, A. R. ; Atwood, H. L.</creator><creatorcontrib>Iyengar, B. G. ; Chou, C. Jennifer ; Vandamme, K. M. ; Klose, M. K. ; Zhao, X. ; Akhtar‐Danesh, N. ; Campos, A. R. ; Atwood, H. L.</creatorcontrib><description>Genetic manipulation of individual neurons provides a powerful approach toward understanding their contribution to stereotypic behaviors. We describe and evaluate a method for identifying candidate interneurons and associated neuropile compartments that mediate Drosophila larval locomotion. We created Drosophila larvae that express green fluorescent protein (GFP) and a shibirets1 (shits1) transgene (a temperature‐sensitive neuronal silencer) in small numbers of randomly selected cholinergic neurons. These larvae were screened for aberrant behavior at an elevated temperature (31–32°C). Among larvae with abnormal locomotion or sensory‐motor responses, some had very small numbers of GFP‐labeled temperature‐sensitive interneurons. Labeled ascending interneurons projecting from the abdominal ganglia to specific brain neuropile compartments emerged as candidates for mediation of larval locomotion. Random targeting of small sets of neurons for functional evaluation, together with anatomical mapping of their processes, provides a tool for identifying the regions of the central nervous system that are required for normal locomotion. We discuss the limitations and advantages of this approach to discovery of interneurons that regulate motor behavior.</description><identifier>ISSN: 1601-1848</identifier><identifier>EISSN: 1601-183X</identifier><identifier>DOI: 10.1111/j.1601-183X.2011.00729.x</identifier><identifier>PMID: 21895974</identifier><identifier>CODEN: GBBEAO</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Animals, Genetically Modified ; Behavior, Animal - physiology ; Brain ; Central nervous system ; Central Nervous System - physiology ; Cholinergic nerves ; Communication ; Critical interneurons ; Drosophila ; Drosophila larval nervous system ; Drosophila melanogaster ; Electrophysiological Phenomena ; Ganglia ; Gene Expression Regulation ; Gene Expression Regulation, Developmental ; Gene mapping ; Genetic Markers ; GFP ; Green fluorescent protein ; Green Fluorescent Proteins ; Immunohistochemistry ; Interneurons ; Interneurons - physiology ; Larva ; Light ; Locomotion ; Locomotion - physiology ; MARCM ; Movement ; Neuropil - physiology ; neuropile compartments ; shibire ts1 ; Stereotyped behavior ; Synapses - physiology ; Temperature ; Temperature effects ; Transgenes</subject><ispartof>Genes, brain and behavior, 2011-11, Vol.10 (8), p.883-900</ispartof><rights>2011 The Authors. Genes, Brain and Behavior © 2011 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society</rights><rights>2011 The Authors. Genes, Brain and Behavior © 2011 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4279-6366ae316c784972f816b086bbe9c0adb71824d0d8919161465a621616c06eb83</citedby><cites>FETCH-LOGICAL-c4279-6366ae316c784972f816b086bbe9c0adb71824d0d8919161465a621616c06eb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1601-183X.2011.00729.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1601-183X.2011.00729.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1601-183X.2011.00729.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21895974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iyengar, B. G.</creatorcontrib><creatorcontrib>Chou, C. Jennifer</creatorcontrib><creatorcontrib>Vandamme, K. M.</creatorcontrib><creatorcontrib>Klose, M. K.</creatorcontrib><creatorcontrib>Zhao, X.</creatorcontrib><creatorcontrib>Akhtar‐Danesh, N.</creatorcontrib><creatorcontrib>Campos, A. R.</creatorcontrib><creatorcontrib>Atwood, H. L.</creatorcontrib><title>Silencing synaptic communication between random interneurons during Drosophila larval locomotion</title><title>Genes, brain and behavior</title><addtitle>Genes Brain Behav</addtitle><description>Genetic manipulation of individual neurons provides a powerful approach toward understanding their contribution to stereotypic behaviors. We describe and evaluate a method for identifying candidate interneurons and associated neuropile compartments that mediate Drosophila larval locomotion. We created Drosophila larvae that express green fluorescent protein (GFP) and a shibirets1 (shits1) transgene (a temperature‐sensitive neuronal silencer) in small numbers of randomly selected cholinergic neurons. These larvae were screened for aberrant behavior at an elevated temperature (31–32°C). Among larvae with abnormal locomotion or sensory‐motor responses, some had very small numbers of GFP‐labeled temperature‐sensitive interneurons. Labeled ascending interneurons projecting from the abdominal ganglia to specific brain neuropile compartments emerged as candidates for mediation of larval locomotion. Random targeting of small sets of neurons for functional evaluation, together with anatomical mapping of their processes, provides a tool for identifying the regions of the central nervous system that are required for normal locomotion. We discuss the limitations and advantages of this approach to discovery of interneurons that regulate motor behavior.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Behavior, Animal - physiology</subject><subject>Brain</subject><subject>Central nervous system</subject><subject>Central Nervous System - physiology</subject><subject>Cholinergic nerves</subject><subject>Communication</subject><subject>Critical interneurons</subject><subject>Drosophila</subject><subject>Drosophila larval nervous system</subject><subject>Drosophila melanogaster</subject><subject>Electrophysiological Phenomena</subject><subject>Ganglia</subject><subject>Gene Expression Regulation</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene mapping</subject><subject>Genetic Markers</subject><subject>GFP</subject><subject>Green fluorescent protein</subject><subject>Green Fluorescent Proteins</subject><subject>Immunohistochemistry</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Larva</subject><subject>Light</subject><subject>Locomotion</subject><subject>Locomotion - physiology</subject><subject>MARCM</subject><subject>Movement</subject><subject>Neuropil - physiology</subject><subject>neuropile compartments</subject><subject>shibire ts1</subject><subject>Stereotyped behavior</subject><subject>Synapses - physiology</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Transgenes</subject><issn>1601-1848</issn><issn>1601-183X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtPxCAYRYnR-P4LhsSFq6l8fVBI3PjWxMSFmrhDShll0sIIrc78e6kzzsKNsuFLOPcSOAhhIAnEdTxJgBIYAcuek5QAJISUKU9ma2h7dbC-mnO2hXZCmBACZcZgE22lwHjBy3wbvTyYRltl7CsOcyunnVFYubbtrVGyM87iSnefWlvspa1di43ttLe6984GXPd-SF54F9z0zTQSN9J_yAY3Lpa4Ib-HNsayCXp_ue-ip6vLx_Ob0d399e356d1I5WnJRzSjVOoMqCpZzst0zIBWhNGq0lwRWVclsDSvSc04cKCQ00LSNA5UEaorlu2io0Xv1Lv3XodOtCYo3TTSatcHwaHIWcFZ-jdJsljPSRnJw1_kxPXexmcIyDijBeOMRIotKBW_IXg9FlNvWunnAogYdImJGEyIwYoYdIlvXWIWowfLC_qq1fUq-OMnAicL4DNqmv-7WFyfncUh-wLFgKOV</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Iyengar, B. G.</creator><creator>Chou, C. Jennifer</creator><creator>Vandamme, K. M.</creator><creator>Klose, M. K.</creator><creator>Zhao, X.</creator><creator>Akhtar‐Danesh, N.</creator><creator>Campos, A. R.</creator><creator>Atwood, H. L.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7SS</scope></search><sort><creationdate>201111</creationdate><title>Silencing synaptic communication between random interneurons during Drosophila larval locomotion</title><author>Iyengar, B. G. ; Chou, C. Jennifer ; Vandamme, K. M. ; Klose, M. K. ; Zhao, X. ; Akhtar‐Danesh, N. ; Campos, A. R. ; Atwood, H. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4279-6366ae316c784972f816b086bbe9c0adb71824d0d8919161465a621616c06eb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Behavior, Animal - physiology</topic><topic>Brain</topic><topic>Central nervous system</topic><topic>Central Nervous System - physiology</topic><topic>Cholinergic nerves</topic><topic>Communication</topic><topic>Critical interneurons</topic><topic>Drosophila</topic><topic>Drosophila larval nervous system</topic><topic>Drosophila melanogaster</topic><topic>Electrophysiological Phenomena</topic><topic>Ganglia</topic><topic>Gene Expression Regulation</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene mapping</topic><topic>Genetic Markers</topic><topic>GFP</topic><topic>Green fluorescent protein</topic><topic>Green Fluorescent Proteins</topic><topic>Immunohistochemistry</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Larva</topic><topic>Light</topic><topic>Locomotion</topic><topic>Locomotion - physiology</topic><topic>MARCM</topic><topic>Movement</topic><topic>Neuropil - physiology</topic><topic>neuropile compartments</topic><topic>shibire ts1</topic><topic>Stereotyped behavior</topic><topic>Synapses - physiology</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iyengar, B. G.</creatorcontrib><creatorcontrib>Chou, C. Jennifer</creatorcontrib><creatorcontrib>Vandamme, K. M.</creatorcontrib><creatorcontrib>Klose, M. K.</creatorcontrib><creatorcontrib>Zhao, X.</creatorcontrib><creatorcontrib>Akhtar‐Danesh, N.</creatorcontrib><creatorcontrib>Campos, A. R.</creatorcontrib><creatorcontrib>Atwood, H. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Entomology Abstracts (Full archive)</collection><jtitle>Genes, brain and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iyengar, B. G.</au><au>Chou, C. Jennifer</au><au>Vandamme, K. M.</au><au>Klose, M. K.</au><au>Zhao, X.</au><au>Akhtar‐Danesh, N.</au><au>Campos, A. R.</au><au>Atwood, H. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silencing synaptic communication between random interneurons during Drosophila larval locomotion</atitle><jtitle>Genes, brain and behavior</jtitle><addtitle>Genes Brain Behav</addtitle><date>2011-11</date><risdate>2011</risdate><volume>10</volume><issue>8</issue><spage>883</spage><epage>900</epage><pages>883-900</pages><issn>1601-1848</issn><eissn>1601-183X</eissn><coden>GBBEAO</coden><abstract>Genetic manipulation of individual neurons provides a powerful approach toward understanding their contribution to stereotypic behaviors. We describe and evaluate a method for identifying candidate interneurons and associated neuropile compartments that mediate Drosophila larval locomotion. We created Drosophila larvae that express green fluorescent protein (GFP) and a shibirets1 (shits1) transgene (a temperature‐sensitive neuronal silencer) in small numbers of randomly selected cholinergic neurons. These larvae were screened for aberrant behavior at an elevated temperature (31–32°C). Among larvae with abnormal locomotion or sensory‐motor responses, some had very small numbers of GFP‐labeled temperature‐sensitive interneurons. Labeled ascending interneurons projecting from the abdominal ganglia to specific brain neuropile compartments emerged as candidates for mediation of larval locomotion. Random targeting of small sets of neurons for functional evaluation, together with anatomical mapping of their processes, provides a tool for identifying the regions of the central nervous system that are required for normal locomotion. We discuss the limitations and advantages of this approach to discovery of interneurons that regulate motor behavior.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21895974</pmid><doi>10.1111/j.1601-183X.2011.00729.x</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1601-1848 |
ispartof | Genes, brain and behavior, 2011-11, Vol.10 (8), p.883-900 |
issn | 1601-1848 1601-183X |
language | eng |
recordid | cdi_proquest_miscellaneous_915485982 |
source | Wiley Online Library Open Access |
subjects | Animals Animals, Genetically Modified Behavior, Animal - physiology Brain Central nervous system Central Nervous System - physiology Cholinergic nerves Communication Critical interneurons Drosophila Drosophila larval nervous system Drosophila melanogaster Electrophysiological Phenomena Ganglia Gene Expression Regulation Gene Expression Regulation, Developmental Gene mapping Genetic Markers GFP Green fluorescent protein Green Fluorescent Proteins Immunohistochemistry Interneurons Interneurons - physiology Larva Light Locomotion Locomotion - physiology MARCM Movement Neuropil - physiology neuropile compartments shibire ts1 Stereotyped behavior Synapses - physiology Temperature Temperature effects Transgenes |
title | Silencing synaptic communication between random interneurons during Drosophila larval locomotion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silencing%20synaptic%20communication%20between%20random%20interneurons%20during%20Drosophila%20larval%20locomotion&rft.jtitle=Genes,%20brain%20and%20behavior&rft.au=Iyengar,%20B.%20G.&rft.date=2011-11&rft.volume=10&rft.issue=8&rft.spage=883&rft.epage=900&rft.pages=883-900&rft.issn=1601-1848&rft.eissn=1601-183X&rft.coden=GBBEAO&rft_id=info:doi/10.1111/j.1601-183X.2011.00729.x&rft_dat=%3Cproquest_24P%3E915485982%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1398658980&rft_id=info:pmid/21895974&rfr_iscdi=true |