miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants

Ultra-deep sampling of small RNA libraries by next-generation sequencing has provided rich information on the microRNA (miRNA) transcriptome of various plant species. However, few computational tools have been developed to effectively deconvolute the complex information. We sought to employ the sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2011-09, Vol.27 (18), p.2614-2615
Hauptverfasser: Yang, Xiaozeng, Li, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2615
container_issue 18
container_start_page 2614
container_title Bioinformatics
container_volume 27
creator Yang, Xiaozeng
Li, Lei
description Ultra-deep sampling of small RNA libraries by next-generation sequencing has provided rich information on the microRNA (miRNA) transcriptome of various plant species. However, few computational tools have been developed to effectively deconvolute the complex information. We sought to employ the signature distribution of small RNA reads along the miRNA precursor as a model in plants to profile expression of known miRNA genes and to identify novel ones. A freely available package, miRDeep-P, was developed by modifying miRDeep, which is based on a probabilistic model of miRNA biogenesis in animals, with a plant-specific scoring system and filtering criteria. We have tested miRDeep-P on eight small RNA libraries derived from three plants. Our results demonstrate miRDeep-P as an effective and easy-to-use tool for characterizing the miRNA transcriptome in plants. http://faculty.virginia.edu/lilab/miRDP/ CONTACT: ll4jn@virginia.edu Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btr430
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_915485950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>915485950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-89c4786a562a6b27beafcb7a3ff20cab96558391b3d2df52970d0b93935201d23</originalsourceid><addsrcrecordid>eNqFkMtKxDAUQIMojq9PULIRV9U828TdMD5BVAZdlyRNNdI2Ncksxq83MqPiytW9F859HQAOMTrFSNIz7bwbWh96lZyJZzoFRtEG2MG0rAomMN78yRGdgN0Y3xBCHPFyG0wIripOEd0B897NL6wdi8dzqKDx_bhIeaIfVAeT9x3MK6DK1fLDDS8wvVrYOxP8_H4KU1BDNMGNyfcWugGOnRpS3AdbreqiPVjHPfB8dfk0uynuHq5vZ9O7wjBBUyGkYZUoFS-JKjWptFWt0ZWibUuQUVqWnAsqsaYNaVpOZIUapCWVlBOEG0L3wMlq7hj8-8LGVPcuGtvlI6xfxFpizgSXHP1LCiGQJIyxTPIVmV-MMdi2HoPrVVjWGNVf3uu_3uuV99x3tN6w0L1tfrq-RWfgeA2oaFTXZnXGxV-OMSEw4fQTa-yQ5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>888092444</pqid></control><display><type>article</type><title>miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Yang, Xiaozeng ; Li, Lei</creator><creatorcontrib>Yang, Xiaozeng ; Li, Lei</creatorcontrib><description>Ultra-deep sampling of small RNA libraries by next-generation sequencing has provided rich information on the microRNA (miRNA) transcriptome of various plant species. However, few computational tools have been developed to effectively deconvolute the complex information. We sought to employ the signature distribution of small RNA reads along the miRNA precursor as a model in plants to profile expression of known miRNA genes and to identify novel ones. A freely available package, miRDeep-P, was developed by modifying miRDeep, which is based on a probabilistic model of miRNA biogenesis in animals, with a plant-specific scoring system and filtering criteria. We have tested miRDeep-P on eight small RNA libraries derived from three plants. Our results demonstrate miRDeep-P as an effective and easy-to-use tool for characterizing the miRNA transcriptome in plants. http://faculty.virginia.edu/lilab/miRDP/ CONTACT: ll4jn@virginia.edu Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>DOI: 10.1093/bioinformatics/btr430</identifier><identifier>PMID: 21775303</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Bioinformatics ; Biological and medical sciences ; Data Mining - methods ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; General aspects ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; MicroRNAs - genetics ; Models, Genetic ; Plants - genetics ; Software ; Transcriptome</subject><ispartof>Bioinformatics, 2011-09, Vol.27 (18), p.2614-2615</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-89c4786a562a6b27beafcb7a3ff20cab96558391b3d2df52970d0b93935201d23</citedby><cites>FETCH-LOGICAL-c483t-89c4786a562a6b27beafcb7a3ff20cab96558391b3d2df52970d0b93935201d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24488125$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21775303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Xiaozeng</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><title>miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Ultra-deep sampling of small RNA libraries by next-generation sequencing has provided rich information on the microRNA (miRNA) transcriptome of various plant species. However, few computational tools have been developed to effectively deconvolute the complex information. We sought to employ the signature distribution of small RNA reads along the miRNA precursor as a model in plants to profile expression of known miRNA genes and to identify novel ones. A freely available package, miRDeep-P, was developed by modifying miRDeep, which is based on a probabilistic model of miRNA biogenesis in animals, with a plant-specific scoring system and filtering criteria. We have tested miRDeep-P on eight small RNA libraries derived from three plants. Our results demonstrate miRDeep-P as an effective and easy-to-use tool for characterizing the miRNA transcriptome in plants. http://faculty.virginia.edu/lilab/miRDP/ CONTACT: ll4jn@virginia.edu Supplementary data are available at Bioinformatics online.</description><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Data Mining - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>General aspects</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>MicroRNAs - genetics</subject><subject>Models, Genetic</subject><subject>Plants - genetics</subject><subject>Software</subject><subject>Transcriptome</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtKxDAUQIMojq9PULIRV9U828TdMD5BVAZdlyRNNdI2Ncksxq83MqPiytW9F859HQAOMTrFSNIz7bwbWh96lZyJZzoFRtEG2MG0rAomMN78yRGdgN0Y3xBCHPFyG0wIripOEd0B897NL6wdi8dzqKDx_bhIeaIfVAeT9x3MK6DK1fLDDS8wvVrYOxP8_H4KU1BDNMGNyfcWugGOnRpS3AdbreqiPVjHPfB8dfk0uynuHq5vZ9O7wjBBUyGkYZUoFS-JKjWptFWt0ZWibUuQUVqWnAsqsaYNaVpOZIUapCWVlBOEG0L3wMlq7hj8-8LGVPcuGtvlI6xfxFpizgSXHP1LCiGQJIyxTPIVmV-MMdi2HoPrVVjWGNVf3uu_3uuV99x3tN6w0L1tfrq-RWfgeA2oaFTXZnXGxV-OMSEw4fQTa-yQ5w</recordid><startdate>20110915</startdate><enddate>20110915</enddate><creator>Yang, Xiaozeng</creator><creator>Li, Lei</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110915</creationdate><title>miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants</title><author>Yang, Xiaozeng ; Li, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-89c4786a562a6b27beafcb7a3ff20cab96558391b3d2df52970d0b93935201d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Data Mining - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>General aspects</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>MicroRNAs - genetics</topic><topic>Models, Genetic</topic><topic>Plants - genetics</topic><topic>Software</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xiaozeng</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xiaozeng</au><au>Li, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2011-09-15</date><risdate>2011</risdate><volume>27</volume><issue>18</issue><spage>2614</spage><epage>2615</epage><pages>2614-2615</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><eissn>1460-2059</eissn><abstract>Ultra-deep sampling of small RNA libraries by next-generation sequencing has provided rich information on the microRNA (miRNA) transcriptome of various plant species. However, few computational tools have been developed to effectively deconvolute the complex information. We sought to employ the signature distribution of small RNA reads along the miRNA precursor as a model in plants to profile expression of known miRNA genes and to identify novel ones. A freely available package, miRDeep-P, was developed by modifying miRDeep, which is based on a probabilistic model of miRNA biogenesis in animals, with a plant-specific scoring system and filtering criteria. We have tested miRDeep-P on eight small RNA libraries derived from three plants. Our results demonstrate miRDeep-P as an effective and easy-to-use tool for characterizing the miRNA transcriptome in plants. http://faculty.virginia.edu/lilab/miRDP/ CONTACT: ll4jn@virginia.edu Supplementary data are available at Bioinformatics online.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>21775303</pmid><doi>10.1093/bioinformatics/btr430</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2011-09, Vol.27 (18), p.2614-2615
issn 1367-4803
1367-4811
1460-2059
language eng
recordid cdi_proquest_miscellaneous_915485950
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection
subjects Bioinformatics
Biological and medical sciences
Data Mining - methods
Fundamental and applied biological sciences. Psychology
Gene Expression
General aspects
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
MicroRNAs - genetics
Models, Genetic
Plants - genetics
Software
Transcriptome
title miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miRDeep-P:%20a%20computational%20tool%20for%20analyzing%20the%20microRNA%20transcriptome%20in%20plants&rft.jtitle=Bioinformatics&rft.au=Yang,%20Xiaozeng&rft.date=2011-09-15&rft.volume=27&rft.issue=18&rft.spage=2614&rft.epage=2615&rft.pages=2614-2615&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btr430&rft_dat=%3Cproquest_cross%3E915485950%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=888092444&rft_id=info:pmid/21775303&rfr_iscdi=true