Vascular component analysis of hyperoxic and hypercapnic BOLD contrast
Hyperoxia or hypercapnia provides a useful experimental tool to systematically alter the blood oxygenation level dependent (BOLD) contrast. Typical applications include calibrated functional magnetic resonance imaging (fMRI), BOLD sensitivity mapping, vessel size imaging or cerebrovascular reactivit...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2012-02, Vol.59 (3), p.2401-2412 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2412 |
---|---|
container_issue | 3 |
container_start_page | 2401 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 59 |
creator | Schwarzbauer, Christian Deichmann, Ralf |
description | Hyperoxia or hypercapnia provides a useful experimental tool to systematically alter the blood oxygenation level dependent (BOLD) contrast. Typical applications include calibrated functional magnetic resonance imaging (fMRI), BOLD sensitivity mapping, vessel size imaging or cerebrovascular reactivity mapping. This article describes a novel biophysical model of hyperoxic and hypercapnic BOLD contrast, which accounts for the magnetic susceptibility effects of molecular oxygen that is dissolved in blood and tissue, in addition to the well-established effects caused by the paramagnetic properties of deoxyhaemoglobin. Furthermore, the concept of vascular component analysis (VCA) is introduced and is shown to provide a computationally efficient tool for investigating the vascular specificity of hyperoxic and hypercapnic BOLD contrast. A theoretical investigation of gradient and spin echo BOLD contrast based on computer simulations was performed to compare three different conditions (hypercapnia induced by breathing 6% CO2, hyperoxia induced by breathing 100% O2, and simultaneous hypercapnia and hyperoxia induced by breathing carbogen, i.e. 5% CO2 in 95% CO2) with baseline (breathing air). Simulations were carried out for different levels of metabolic oxygen extraction fraction (OEF) ranging from 0 to 0.5. The key findings can be summarised as follows: (i) for hyperoxia the susceptibility of dissolved O2 may lead to a significant arterial BOLD contrast; (ii) under normoxic conditions the susceptibility of dissolved O2 is negligible; (iii) an almost complete loss of BOLD sensitivity may occur at lower OEF values in all parts of the vascular tree, whereas hyperoxic BOLD sensitivity is largely maintained; (iv) under hyperoxic conditions, a transition from positive to negative BOLD contrast occurs with decreasing OEF values. These findings have important implications for experimental applications of hyperoxic and hypercapnic BOLD contrast and may enable new clinical applications in ischemic stroke and other forms of acquired brain injury. |
doi_str_mv | 10.1016/j.neuroimage.2011.08.110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_915379811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811911010512</els_id><sourcerecordid>915379811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-a6176c3cf4599f2372a4ad2c262fb4a38482bd33a670511970ce185567a2763f3</originalsourceid><addsrcrecordid>eNqFkEFPwyAUx4nROJ1-BdPEg6dWHpQCRzedmizZRb0SRql26UqF1rhvL8umJl48wSO_P--9H0IJ4AwwFNerrLWDd_Vav9qMYIAMiwwAH6ATwJKlknFyuL0zmgoAOUKnIawwxhJycYxGBGTOuCQnaPaigxka7RPj1p1rbdsnutXNJtQhcVXytumsd5-1ia_lrjK6a2M9WcxvY6jtvQ79GTqqdBPs-f4co-fZ3dP0IZ0v7h-nN_PU5Bj6VBfAC0NNlTMpK0I50bkuiSEFqZa5piIXZFlSqguOWZybY2NBMFZwTXhBKzpGV7t_O-_eBxt6ta6DsU2jW-uGoCQwymVcOZKXf8iVG3zcLChgDAsqMOOREjvKeBeCt5XqfLTqNwqw2qpWK_WrWm1VKyxUVB2jF_sGw3Jty5_gt9sITHaAjUI-autVMLVtjS1rb02vSlf_3-ULWRSTSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1550838057</pqid></control><display><type>article</type><title>Vascular component analysis of hyperoxic and hypercapnic BOLD contrast</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Schwarzbauer, Christian ; Deichmann, Ralf</creator><creatorcontrib>Schwarzbauer, Christian ; Deichmann, Ralf</creatorcontrib><description>Hyperoxia or hypercapnia provides a useful experimental tool to systematically alter the blood oxygenation level dependent (BOLD) contrast. Typical applications include calibrated functional magnetic resonance imaging (fMRI), BOLD sensitivity mapping, vessel size imaging or cerebrovascular reactivity mapping. This article describes a novel biophysical model of hyperoxic and hypercapnic BOLD contrast, which accounts for the magnetic susceptibility effects of molecular oxygen that is dissolved in blood and tissue, in addition to the well-established effects caused by the paramagnetic properties of deoxyhaemoglobin. Furthermore, the concept of vascular component analysis (VCA) is introduced and is shown to provide a computationally efficient tool for investigating the vascular specificity of hyperoxic and hypercapnic BOLD contrast. A theoretical investigation of gradient and spin echo BOLD contrast based on computer simulations was performed to compare three different conditions (hypercapnia induced by breathing 6% CO2, hyperoxia induced by breathing 100% O2, and simultaneous hypercapnia and hyperoxia induced by breathing carbogen, i.e. 5% CO2 in 95% CO2) with baseline (breathing air). Simulations were carried out for different levels of metabolic oxygen extraction fraction (OEF) ranging from 0 to 0.5. The key findings can be summarised as follows: (i) for hyperoxia the susceptibility of dissolved O2 may lead to a significant arterial BOLD contrast; (ii) under normoxic conditions the susceptibility of dissolved O2 is negligible; (iii) an almost complete loss of BOLD sensitivity may occur at lower OEF values in all parts of the vascular tree, whereas hyperoxic BOLD sensitivity is largely maintained; (iv) under hyperoxic conditions, a transition from positive to negative BOLD contrast occurs with decreasing OEF values. These findings have important implications for experimental applications of hyperoxic and hypercapnic BOLD contrast and may enable new clinical applications in ischemic stroke and other forms of acquired brain injury.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2011.08.110</identifier><identifier>PMID: 21945792</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Blood Vessels - pathology ; BOLD contrast mechanism ; Brain damage ; Capillaries - pathology ; Carbon dioxide ; Cerebral Arteries - pathology ; Cerebral Veins - pathology ; Cerebrovascular Circulation - physiology ; Computer Simulation ; fMRI ; Hemoglobins - metabolism ; Humans ; Hypercapnia - pathology ; Hyperoxia ; Hyperoxia - pathology ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Magnetic susceptibility ; Models, Anatomic ; Models, Statistical ; Normal Distribution ; Oxygen - blood ; Oxygen–haemoglobin dissociation curve Hypercapnia ; Principal Component Analysis ; Stroke ; Studies</subject><ispartof>NeuroImage (Orlando, Fla.), 2012-02, Vol.59 (3), p.2401-2412</ispartof><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 1, 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-a6176c3cf4599f2372a4ad2c262fb4a38482bd33a670511970ce185567a2763f3</citedby><cites>FETCH-LOGICAL-c401t-a6176c3cf4599f2372a4ad2c262fb4a38482bd33a670511970ce185567a2763f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811911010512$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21945792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwarzbauer, Christian</creatorcontrib><creatorcontrib>Deichmann, Ralf</creatorcontrib><title>Vascular component analysis of hyperoxic and hypercapnic BOLD contrast</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Hyperoxia or hypercapnia provides a useful experimental tool to systematically alter the blood oxygenation level dependent (BOLD) contrast. Typical applications include calibrated functional magnetic resonance imaging (fMRI), BOLD sensitivity mapping, vessel size imaging or cerebrovascular reactivity mapping. This article describes a novel biophysical model of hyperoxic and hypercapnic BOLD contrast, which accounts for the magnetic susceptibility effects of molecular oxygen that is dissolved in blood and tissue, in addition to the well-established effects caused by the paramagnetic properties of deoxyhaemoglobin. Furthermore, the concept of vascular component analysis (VCA) is introduced and is shown to provide a computationally efficient tool for investigating the vascular specificity of hyperoxic and hypercapnic BOLD contrast. A theoretical investigation of gradient and spin echo BOLD contrast based on computer simulations was performed to compare three different conditions (hypercapnia induced by breathing 6% CO2, hyperoxia induced by breathing 100% O2, and simultaneous hypercapnia and hyperoxia induced by breathing carbogen, i.e. 5% CO2 in 95% CO2) with baseline (breathing air). Simulations were carried out for different levels of metabolic oxygen extraction fraction (OEF) ranging from 0 to 0.5. The key findings can be summarised as follows: (i) for hyperoxia the susceptibility of dissolved O2 may lead to a significant arterial BOLD contrast; (ii) under normoxic conditions the susceptibility of dissolved O2 is negligible; (iii) an almost complete loss of BOLD sensitivity may occur at lower OEF values in all parts of the vascular tree, whereas hyperoxic BOLD sensitivity is largely maintained; (iv) under hyperoxic conditions, a transition from positive to negative BOLD contrast occurs with decreasing OEF values. These findings have important implications for experimental applications of hyperoxic and hypercapnic BOLD contrast and may enable new clinical applications in ischemic stroke and other forms of acquired brain injury.</description><subject>Algorithms</subject><subject>Blood Vessels - pathology</subject><subject>BOLD contrast mechanism</subject><subject>Brain damage</subject><subject>Capillaries - pathology</subject><subject>Carbon dioxide</subject><subject>Cerebral Arteries - pathology</subject><subject>Cerebral Veins - pathology</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Computer Simulation</subject><subject>fMRI</subject><subject>Hemoglobins - metabolism</subject><subject>Humans</subject><subject>Hypercapnia - pathology</subject><subject>Hyperoxia</subject><subject>Hyperoxia - pathology</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic susceptibility</subject><subject>Models, Anatomic</subject><subject>Models, Statistical</subject><subject>Normal Distribution</subject><subject>Oxygen - blood</subject><subject>Oxygen–haemoglobin dissociation curve Hypercapnia</subject><subject>Principal Component Analysis</subject><subject>Stroke</subject><subject>Studies</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkEFPwyAUx4nROJ1-BdPEg6dWHpQCRzedmizZRb0SRql26UqF1rhvL8umJl48wSO_P--9H0IJ4AwwFNerrLWDd_Vav9qMYIAMiwwAH6ATwJKlknFyuL0zmgoAOUKnIawwxhJycYxGBGTOuCQnaPaigxka7RPj1p1rbdsnutXNJtQhcVXytumsd5-1ia_lrjK6a2M9WcxvY6jtvQ79GTqqdBPs-f4co-fZ3dP0IZ0v7h-nN_PU5Bj6VBfAC0NNlTMpK0I50bkuiSEFqZa5piIXZFlSqguOWZybY2NBMFZwTXhBKzpGV7t_O-_eBxt6ta6DsU2jW-uGoCQwymVcOZKXf8iVG3zcLChgDAsqMOOREjvKeBeCt5XqfLTqNwqw2qpWK_WrWm1VKyxUVB2jF_sGw3Jty5_gt9sITHaAjUI-autVMLVtjS1rb02vSlf_3-ULWRSTSw</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Schwarzbauer, Christian</creator><creator>Deichmann, Ralf</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20120201</creationdate><title>Vascular component analysis of hyperoxic and hypercapnic BOLD contrast</title><author>Schwarzbauer, Christian ; Deichmann, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-a6176c3cf4599f2372a4ad2c262fb4a38482bd33a670511970ce185567a2763f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Blood Vessels - pathology</topic><topic>BOLD contrast mechanism</topic><topic>Brain damage</topic><topic>Capillaries - pathology</topic><topic>Carbon dioxide</topic><topic>Cerebral Arteries - pathology</topic><topic>Cerebral Veins - pathology</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Computer Simulation</topic><topic>fMRI</topic><topic>Hemoglobins - metabolism</topic><topic>Humans</topic><topic>Hypercapnia - pathology</topic><topic>Hyperoxia</topic><topic>Hyperoxia - pathology</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic susceptibility</topic><topic>Models, Anatomic</topic><topic>Models, Statistical</topic><topic>Normal Distribution</topic><topic>Oxygen - blood</topic><topic>Oxygen–haemoglobin dissociation curve Hypercapnia</topic><topic>Principal Component Analysis</topic><topic>Stroke</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwarzbauer, Christian</creatorcontrib><creatorcontrib>Deichmann, Ralf</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwarzbauer, Christian</au><au>Deichmann, Ralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascular component analysis of hyperoxic and hypercapnic BOLD contrast</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>59</volume><issue>3</issue><spage>2401</spage><epage>2412</epage><pages>2401-2412</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Hyperoxia or hypercapnia provides a useful experimental tool to systematically alter the blood oxygenation level dependent (BOLD) contrast. Typical applications include calibrated functional magnetic resonance imaging (fMRI), BOLD sensitivity mapping, vessel size imaging or cerebrovascular reactivity mapping. This article describes a novel biophysical model of hyperoxic and hypercapnic BOLD contrast, which accounts for the magnetic susceptibility effects of molecular oxygen that is dissolved in blood and tissue, in addition to the well-established effects caused by the paramagnetic properties of deoxyhaemoglobin. Furthermore, the concept of vascular component analysis (VCA) is introduced and is shown to provide a computationally efficient tool for investigating the vascular specificity of hyperoxic and hypercapnic BOLD contrast. A theoretical investigation of gradient and spin echo BOLD contrast based on computer simulations was performed to compare three different conditions (hypercapnia induced by breathing 6% CO2, hyperoxia induced by breathing 100% O2, and simultaneous hypercapnia and hyperoxia induced by breathing carbogen, i.e. 5% CO2 in 95% CO2) with baseline (breathing air). Simulations were carried out for different levels of metabolic oxygen extraction fraction (OEF) ranging from 0 to 0.5. The key findings can be summarised as follows: (i) for hyperoxia the susceptibility of dissolved O2 may lead to a significant arterial BOLD contrast; (ii) under normoxic conditions the susceptibility of dissolved O2 is negligible; (iii) an almost complete loss of BOLD sensitivity may occur at lower OEF values in all parts of the vascular tree, whereas hyperoxic BOLD sensitivity is largely maintained; (iv) under hyperoxic conditions, a transition from positive to negative BOLD contrast occurs with decreasing OEF values. These findings have important implications for experimental applications of hyperoxic and hypercapnic BOLD contrast and may enable new clinical applications in ischemic stroke and other forms of acquired brain injury.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21945792</pmid><doi>10.1016/j.neuroimage.2011.08.110</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2012-02, Vol.59 (3), p.2401-2412 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_915379811 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Blood Vessels - pathology BOLD contrast mechanism Brain damage Capillaries - pathology Carbon dioxide Cerebral Arteries - pathology Cerebral Veins - pathology Cerebrovascular Circulation - physiology Computer Simulation fMRI Hemoglobins - metabolism Humans Hypercapnia - pathology Hyperoxia Hyperoxia - pathology Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Magnetic susceptibility Models, Anatomic Models, Statistical Normal Distribution Oxygen - blood Oxygen–haemoglobin dissociation curve Hypercapnia Principal Component Analysis Stroke Studies |
title | Vascular component analysis of hyperoxic and hypercapnic BOLD contrast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A21%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascular%20component%20analysis%20of%20hyperoxic%20and%20hypercapnic%20BOLD%20contrast&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Schwarzbauer,%20Christian&rft.date=2012-02-01&rft.volume=59&rft.issue=3&rft.spage=2401&rft.epage=2412&rft.pages=2401-2412&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2011.08.110&rft_dat=%3Cproquest_cross%3E915379811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1550838057&rft_id=info:pmid/21945792&rft_els_id=S1053811911010512&rfr_iscdi=true |