A neural network with asymmetric basis functions for feature extraction of ECG P waves

In this work a simple neural network with asymmetric basis functions is proposed as a feature extractor for P waves in electrocardiographic signals (ECG). The neural network is trained using the classical backward-error-propagation algorithm. The performance of the proposed network was tested using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2001-09, Vol.12 (5), p.1252-1255
Hauptverfasser: de Azevedo Botter, E., Nascimento, C.L., Yoneyama, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1255
container_issue 5
container_start_page 1252
container_title IEEE transaction on neural networks and learning systems
container_volume 12
creator de Azevedo Botter, E.
Nascimento, C.L.
Yoneyama, T.
description In this work a simple neural network with asymmetric basis functions is proposed as a feature extractor for P waves in electrocardiographic signals (ECG). The neural network is trained using the classical backward-error-propagation algorithm. The performance of the proposed network was tested using actual ECG signals and compared with other types of neural feature extractors.
doi_str_mv 10.1109/72.950154
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_914666269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>950154</ieee_id><sourcerecordid>914666269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-fe289603aa231a7284d61db55c6231032e1f0e1adb8f542f0b4746ec0179df613</originalsourceid><addsrcrecordid>eNqF0U1P3DAQBmCrAvFVDr32gCwOIA7Zzjj-iI9oBQsSUntoe42cZKwGNgnYCQv_HsOuWolDOXk0fjyy5mXsC8IMEew3I2ZWASr5ie2hlZgB2Hwr1SBVZoUwu2w_xlsAlAr0DtvFQkhrldhjv895T1Nwy3SMqyHc8VU7_uEuPncdjaGteeViG7mf-npshz5VQ-Ce3DgF4vQ0BvfW54PnF_MF_8FX7pHiZ7bt3TLS4eY8YL8uL37Or7Kb74vr-flNVkshxsyTKKyG3DmRozOikI3GplKq1qkBuSD0QOiaqvBKCg-VNFJTDWhs4zXmB-x0Pfc-DA8TxbHs2ljTcul6GqZYWpRaa6Hth9LkMu3EqFd58l-ZfqltUaiPoS4UplgSPH4Hb4cp9GkxpRVQaGUgT-hsjeowxBjIl_eh7Vx4LhHK15hLI8p1zMkebQZOVUfNP7nJNYGva9AS0d_rzesX_Dynww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920865703</pqid></control><display><type>article</type><title>A neural network with asymmetric basis functions for feature extraction of ECG P waves</title><source>IEEE Electronic Library (IEL)</source><creator>de Azevedo Botter, E. ; Nascimento, C.L. ; Yoneyama, T.</creator><creatorcontrib>de Azevedo Botter, E. ; Nascimento, C.L. ; Yoneyama, T.</creatorcontrib><description>In this work a simple neural network with asymmetric basis functions is proposed as a feature extractor for P waves in electrocardiographic signals (ECG). The neural network is trained using the classical backward-error-propagation algorithm. The performance of the proposed network was tested using actual ECG signals and compared with other types of neural feature extractors.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/72.950154</identifier><identifier>PMID: 18249952</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Asymmetry ; Basis functions ; Brazil Council ; Clustering algorithms ; Data mining ; Electrocardiography ; Environmental economics ; Feature extraction ; Morphology ; Networks ; Neural networks ; P waves ; Pattern clustering ; Testing</subject><ispartof>IEEE transaction on neural networks and learning systems, 2001-09, Vol.12 (5), p.1252-1255</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-fe289603aa231a7284d61db55c6231032e1f0e1adb8f542f0b4746ec0179df613</citedby><cites>FETCH-LOGICAL-c422t-fe289603aa231a7284d61db55c6231032e1f0e1adb8f542f0b4746ec0179df613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/950154$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/950154$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18249952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Azevedo Botter, E.</creatorcontrib><creatorcontrib>Nascimento, C.L.</creatorcontrib><creatorcontrib>Yoneyama, T.</creatorcontrib><title>A neural network with asymmetric basis functions for feature extraction of ECG P waves</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>In this work a simple neural network with asymmetric basis functions is proposed as a feature extractor for P waves in electrocardiographic signals (ECG). The neural network is trained using the classical backward-error-propagation algorithm. The performance of the proposed network was tested using actual ECG signals and compared with other types of neural feature extractors.</description><subject>Algorithms</subject><subject>Asymmetry</subject><subject>Basis functions</subject><subject>Brazil Council</subject><subject>Clustering algorithms</subject><subject>Data mining</subject><subject>Electrocardiography</subject><subject>Environmental economics</subject><subject>Feature extraction</subject><subject>Morphology</subject><subject>Networks</subject><subject>Neural networks</subject><subject>P waves</subject><subject>Pattern clustering</subject><subject>Testing</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0U1P3DAQBmCrAvFVDr32gCwOIA7Zzjj-iI9oBQsSUntoe42cZKwGNgnYCQv_HsOuWolDOXk0fjyy5mXsC8IMEew3I2ZWASr5ie2hlZgB2Hwr1SBVZoUwu2w_xlsAlAr0DtvFQkhrldhjv895T1Nwy3SMqyHc8VU7_uEuPncdjaGteeViG7mf-npshz5VQ-Ce3DgF4vQ0BvfW54PnF_MF_8FX7pHiZ7bt3TLS4eY8YL8uL37Or7Kb74vr-flNVkshxsyTKKyG3DmRozOikI3GplKq1qkBuSD0QOiaqvBKCg-VNFJTDWhs4zXmB-x0Pfc-DA8TxbHs2ljTcul6GqZYWpRaa6Hth9LkMu3EqFd58l-ZfqltUaiPoS4UplgSPH4Hb4cp9GkxpRVQaGUgT-hsjeowxBjIl_eh7Vx4LhHK15hLI8p1zMkebQZOVUfNP7nJNYGva9AS0d_rzesX_Dynww</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>de Azevedo Botter, E.</creator><creator>Nascimento, C.L.</creator><creator>Yoneyama, T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20010901</creationdate><title>A neural network with asymmetric basis functions for feature extraction of ECG P waves</title><author>de Azevedo Botter, E. ; Nascimento, C.L. ; Yoneyama, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-fe289603aa231a7284d61db55c6231032e1f0e1adb8f542f0b4746ec0179df613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Asymmetry</topic><topic>Basis functions</topic><topic>Brazil Council</topic><topic>Clustering algorithms</topic><topic>Data mining</topic><topic>Electrocardiography</topic><topic>Environmental economics</topic><topic>Feature extraction</topic><topic>Morphology</topic><topic>Networks</topic><topic>Neural networks</topic><topic>P waves</topic><topic>Pattern clustering</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>de Azevedo Botter, E.</creatorcontrib><creatorcontrib>Nascimento, C.L.</creatorcontrib><creatorcontrib>Yoneyama, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Azevedo Botter, E.</au><au>Nascimento, C.L.</au><au>Yoneyama, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neural network with asymmetric basis functions for feature extraction of ECG P waves</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2001-09-01</date><risdate>2001</risdate><volume>12</volume><issue>5</issue><spage>1252</spage><epage>1255</epage><pages>1252-1255</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>In this work a simple neural network with asymmetric basis functions is proposed as a feature extractor for P waves in electrocardiographic signals (ECG). The neural network is trained using the classical backward-error-propagation algorithm. The performance of the proposed network was tested using actual ECG signals and compared with other types of neural feature extractors.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18249952</pmid><doi>10.1109/72.950154</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2001-09, Vol.12 (5), p.1252-1255
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_proquest_miscellaneous_914666269
source IEEE Electronic Library (IEL)
subjects Algorithms
Asymmetry
Basis functions
Brazil Council
Clustering algorithms
Data mining
Electrocardiography
Environmental economics
Feature extraction
Morphology
Networks
Neural networks
P waves
Pattern clustering
Testing
title A neural network with asymmetric basis functions for feature extraction of ECG P waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neural%20network%20with%20asymmetric%20basis%20functions%20for%20feature%20extraction%20of%20ECG%20P%20waves&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=de%20Azevedo%20Botter,%20E.&rft.date=2001-09-01&rft.volume=12&rft.issue=5&rft.spage=1252&rft.epage=1255&rft.pages=1252-1255&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.950154&rft_dat=%3Cproquest_RIE%3E914666269%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920865703&rft_id=info:pmid/18249952&rft_ieee_id=950154&rfr_iscdi=true