InP based semiconductor structures for radiation detection

We report the preparation of semi-insulating InP single crystals of p -type conductivity and intentionally undoped p -type epitaxial layers for radiation detection. We focus on (i) the growth of InP single crystals doped with copper by the Czochralski technique and their subsequent temperature annea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2008-09, Vol.19 (8-9), p.770-775
Hauptverfasser: Procházková, Olga, Grym, Jan, Pekárek, Ladislav, Zavadil, Jiří, Žďánský, Karel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 775
container_issue 8-9
container_start_page 770
container_title Journal of materials science. Materials in electronics
container_volume 19
creator Procházková, Olga
Grym, Jan
Pekárek, Ladislav
Zavadil, Jiří
Žďánský, Karel
description We report the preparation of semi-insulating InP single crystals of p -type conductivity and intentionally undoped p -type epitaxial layers for radiation detection. We focus on (i) the growth of InP single crystals doped with copper by the Czochralski technique and their subsequent temperature annealing to convert them to a semi-insulating (SI) state of p -type conductivity, and (ii) the growth of thick (>10 μm) p -type InP layers by liquid phase epitaxy with an admixture of Pr and Dy. Grown layers and single crystals were examined by low-temperature photoluminescence spectroscopy, capacitance-voltage and temperature dependent Hall measurements. An efficient purification due to rare earth (RE) admixture has been observed and layers grown with the addition of Pr and Dy exhibit the change of electrical conductivity from n to p at certain RE concentration in the melt. Dominant acceptors responsible for conductivity conversion have been identified. Three types of detection structures exploiting the Schottky or Schottky like contacts on pure and SI p -type InP or exploiting the p – n junction were designed.
doi_str_mv 10.1007/s10854-007-9407-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914662747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419912051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-30825a8cb331c5de32f2de9407ff89d0626a105b70f2c76ec4c05491e1da6bdd3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLcgiKfofu_GmxQ_CgU9KHhbNvshKW1Sd5KD_94NKQqCl5l3mGdeXgahc4KvCcbqBgjWgpdZlhXPhRygGRGKlVzT90M0w5VQJReUHqMTgDXGWHKmZ-h22b4UtYXgCwjbxnWtH1zfpQL6lMWQAhQxj8n6xvZN1xY-9MGN6hQdRbuBcLbvc_T2cP-6eCpXz4_Lxd2qdIxWfcmwpsJqVzNGnPCB0Uh9GEPGqCuPJZWWYFErHKlTMjjusOAVCcRbWXvP5uhq8t2l7nMI0JttAy5sNrYN3QCmIlxKqrjK5MUfct0Nqc3hjNZECsEZzRCZIJc6gBSi2aVma9OXIdiMvzTTL80ox5iG5JvLvbEFZzcx2dY18HNImeJMVTJzdOIgr9qPkH4D_G_-Db2vgx0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881655432</pqid></control><display><type>article</type><title>InP based semiconductor structures for radiation detection</title><source>SpringerNature Journals</source><creator>Procházková, Olga ; Grym, Jan ; Pekárek, Ladislav ; Zavadil, Jiří ; Žďánský, Karel</creator><creatorcontrib>Procházková, Olga ; Grym, Jan ; Pekárek, Ladislav ; Zavadil, Jiří ; Žďánský, Karel</creatorcontrib><description>We report the preparation of semi-insulating InP single crystals of p -type conductivity and intentionally undoped p -type epitaxial layers for radiation detection. We focus on (i) the growth of InP single crystals doped with copper by the Czochralski technique and their subsequent temperature annealing to convert them to a semi-insulating (SI) state of p -type conductivity, and (ii) the growth of thick (&gt;10 μm) p -type InP layers by liquid phase epitaxy with an admixture of Pr and Dy. Grown layers and single crystals were examined by low-temperature photoluminescence spectroscopy, capacitance-voltage and temperature dependent Hall measurements. An efficient purification due to rare earth (RE) admixture has been observed and layers grown with the addition of Pr and Dy exhibit the change of electrical conductivity from n to p at certain RE concentration in the melt. Dominant acceptors responsible for conductivity conversion have been identified. Three types of detection structures exploiting the Schottky or Schottky like contacts on pure and SI p -type InP or exploiting the p – n junction were designed.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-007-9407-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Admixtures ; Annealing ; Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures ; Cross-disciplinary physics: materials science; rheology ; Dysprosium ; Electronics ; Exact sciences and technology ; Growth from melts; zone melting and refining ; Heat treatment ; Indium phosphides ; Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids) ; Materials Science ; Metals. Metallurgy ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Optical and Electronic Materials ; Physics ; Production techniques ; Rare earth metals ; Resistivity ; Semiconductors ; Single crystals ; Treatment of materials and its effects on microstructure and properties</subject><ispartof>Journal of materials science. Materials in electronics, 2008-09, Vol.19 (8-9), p.770-775</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><rights>2015 INIST-CNRS</rights><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-30825a8cb331c5de32f2de9407ff89d0626a105b70f2c76ec4c05491e1da6bdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-007-9407-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-007-9407-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,315,782,786,791,792,23939,23940,25149,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23743796$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Procházková, Olga</creatorcontrib><creatorcontrib>Grym, Jan</creatorcontrib><creatorcontrib>Pekárek, Ladislav</creatorcontrib><creatorcontrib>Zavadil, Jiří</creatorcontrib><creatorcontrib>Žďánský, Karel</creatorcontrib><title>InP based semiconductor structures for radiation detection</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>We report the preparation of semi-insulating InP single crystals of p -type conductivity and intentionally undoped p -type epitaxial layers for radiation detection. We focus on (i) the growth of InP single crystals doped with copper by the Czochralski technique and their subsequent temperature annealing to convert them to a semi-insulating (SI) state of p -type conductivity, and (ii) the growth of thick (&gt;10 μm) p -type InP layers by liquid phase epitaxy with an admixture of Pr and Dy. Grown layers and single crystals were examined by low-temperature photoluminescence spectroscopy, capacitance-voltage and temperature dependent Hall measurements. An efficient purification due to rare earth (RE) admixture has been observed and layers grown with the addition of Pr and Dy exhibit the change of electrical conductivity from n to p at certain RE concentration in the melt. Dominant acceptors responsible for conductivity conversion have been identified. Three types of detection structures exploiting the Schottky or Schottky like contacts on pure and SI p -type InP or exploiting the p – n junction were designed.</description><subject>Admixtures</subject><subject>Annealing</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dysprosium</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Growth from melts; zone melting and refining</subject><subject>Heat treatment</subject><subject>Indium phosphides</subject><subject>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</subject><subject>Materials Science</subject><subject>Metals. Metallurgy</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Rare earth metals</subject><subject>Resistivity</subject><subject>Semiconductors</subject><subject>Single crystals</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLcgiKfofu_GmxQ_CgU9KHhbNvshKW1Sd5KD_94NKQqCl5l3mGdeXgahc4KvCcbqBgjWgpdZlhXPhRygGRGKlVzT90M0w5VQJReUHqMTgDXGWHKmZ-h22b4UtYXgCwjbxnWtH1zfpQL6lMWQAhQxj8n6xvZN1xY-9MGN6hQdRbuBcLbvc_T2cP-6eCpXz4_Lxd2qdIxWfcmwpsJqVzNGnPCB0Uh9GEPGqCuPJZWWYFErHKlTMjjusOAVCcRbWXvP5uhq8t2l7nMI0JttAy5sNrYN3QCmIlxKqrjK5MUfct0Nqc3hjNZECsEZzRCZIJc6gBSi2aVma9OXIdiMvzTTL80ox5iG5JvLvbEFZzcx2dY18HNImeJMVTJzdOIgr9qPkH4D_G_-Db2vgx0</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Procházková, Olga</creator><creator>Grym, Jan</creator><creator>Pekárek, Ladislav</creator><creator>Zavadil, Jiří</creator><creator>Žďánský, Karel</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><scope>7QQ</scope></search><sort><creationdate>20080901</creationdate><title>InP based semiconductor structures for radiation detection</title><author>Procházková, Olga ; Grym, Jan ; Pekárek, Ladislav ; Zavadil, Jiří ; Žďánský, Karel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-30825a8cb331c5de32f2de9407ff89d0626a105b70f2c76ec4c05491e1da6bdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Admixtures</topic><topic>Annealing</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dysprosium</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Growth from melts; zone melting and refining</topic><topic>Heat treatment</topic><topic>Indium phosphides</topic><topic>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</topic><topic>Materials Science</topic><topic>Metals. Metallurgy</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Rare earth metals</topic><topic>Resistivity</topic><topic>Semiconductors</topic><topic>Single crystals</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Procházková, Olga</creatorcontrib><creatorcontrib>Grym, Jan</creatorcontrib><creatorcontrib>Pekárek, Ladislav</creatorcontrib><creatorcontrib>Zavadil, Jiří</creatorcontrib><creatorcontrib>Žďánský, Karel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Ceramic Abstracts</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Procházková, Olga</au><au>Grym, Jan</au><au>Pekárek, Ladislav</au><au>Zavadil, Jiří</au><au>Žďánský, Karel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>InP based semiconductor structures for radiation detection</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>19</volume><issue>8-9</issue><spage>770</spage><epage>775</epage><pages>770-775</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>We report the preparation of semi-insulating InP single crystals of p -type conductivity and intentionally undoped p -type epitaxial layers for radiation detection. We focus on (i) the growth of InP single crystals doped with copper by the Czochralski technique and their subsequent temperature annealing to convert them to a semi-insulating (SI) state of p -type conductivity, and (ii) the growth of thick (&gt;10 μm) p -type InP layers by liquid phase epitaxy with an admixture of Pr and Dy. Grown layers and single crystals were examined by low-temperature photoluminescence spectroscopy, capacitance-voltage and temperature dependent Hall measurements. An efficient purification due to rare earth (RE) admixture has been observed and layers grown with the addition of Pr and Dy exhibit the change of electrical conductivity from n to p at certain RE concentration in the melt. Dominant acceptors responsible for conductivity conversion have been identified. Three types of detection structures exploiting the Schottky or Schottky like contacts on pure and SI p -type InP or exploiting the p – n junction were designed.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10854-007-9407-1</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2008-09, Vol.19 (8-9), p.770-775
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_miscellaneous_914662747
source SpringerNature Journals
subjects Admixtures
Annealing
Applied sciences
Characterization and Evaluation of Materials
Chemistry and Materials Science
Cold working, work hardening
annealing, quenching, tempering, recovery, and recrystallization
textures
Cross-disciplinary physics: materials science
rheology
Dysprosium
Electronics
Exact sciences and technology
Growth from melts
zone melting and refining
Heat treatment
Indium phosphides
Liquid phase epitaxy
deposition from liquid phases (melts, solutions, and surface layers on liquids)
Materials Science
Metals. Metallurgy
Methods of crystal growth
physics of crystal growth
Methods of deposition of films and coatings
film growth and epitaxy
Optical and Electronic Materials
Physics
Production techniques
Rare earth metals
Resistivity
Semiconductors
Single crystals
Treatment of materials and its effects on microstructure and properties
title InP based semiconductor structures for radiation detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T21%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=InP%20based%20semiconductor%20structures%20for%20radiation%20detection&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Proch%C3%A1zkov%C3%A1,%20Olga&rft.date=2008-09-01&rft.volume=19&rft.issue=8-9&rft.spage=770&rft.epage=775&rft.pages=770-775&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-007-9407-1&rft_dat=%3Cproquest_cross%3E2419912051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881655432&rft_id=info:pmid/&rfr_iscdi=true