InP based semiconductor structures for radiation detection
We report the preparation of semi-insulating InP single crystals of p -type conductivity and intentionally undoped p -type epitaxial layers for radiation detection. We focus on (i) the growth of InP single crystals doped with copper by the Czochralski technique and their subsequent temperature annea...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2008-09, Vol.19 (8-9), p.770-775 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 775 |
---|---|
container_issue | 8-9 |
container_start_page | 770 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 19 |
creator | Procházková, Olga Grym, Jan Pekárek, Ladislav Zavadil, Jiří Žďánský, Karel |
description | We report the preparation of semi-insulating InP single crystals of
p
-type conductivity and intentionally undoped
p
-type epitaxial layers for radiation detection. We focus on (i) the growth of InP single crystals doped with copper by the Czochralski technique and their subsequent temperature annealing to convert them to a semi-insulating (SI) state of
p
-type conductivity, and (ii) the growth of thick (>10 μm)
p
-type InP layers by liquid phase epitaxy with an admixture of Pr and Dy. Grown layers and single crystals were examined by low-temperature photoluminescence spectroscopy, capacitance-voltage and temperature dependent Hall measurements. An efficient purification due to rare earth (RE) admixture has been observed and layers grown with the addition of Pr and Dy exhibit the change of electrical conductivity from
n
to
p
at certain RE concentration in the melt. Dominant acceptors responsible for conductivity conversion have been identified. Three types of detection structures exploiting the Schottky or Schottky like contacts on pure and SI
p
-type InP or exploiting the
p
–
n
junction were designed. |
doi_str_mv | 10.1007/s10854-007-9407-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914662747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419912051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-30825a8cb331c5de32f2de9407ff89d0626a105b70f2c76ec4c05491e1da6bdd3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLcgiKfofu_GmxQ_CgU9KHhbNvshKW1Sd5KD_94NKQqCl5l3mGdeXgahc4KvCcbqBgjWgpdZlhXPhRygGRGKlVzT90M0w5VQJReUHqMTgDXGWHKmZ-h22b4UtYXgCwjbxnWtH1zfpQL6lMWQAhQxj8n6xvZN1xY-9MGN6hQdRbuBcLbvc_T2cP-6eCpXz4_Lxd2qdIxWfcmwpsJqVzNGnPCB0Uh9GEPGqCuPJZWWYFErHKlTMjjusOAVCcRbWXvP5uhq8t2l7nMI0JttAy5sNrYN3QCmIlxKqrjK5MUfct0Nqc3hjNZECsEZzRCZIJc6gBSi2aVma9OXIdiMvzTTL80ox5iG5JvLvbEFZzcx2dY18HNImeJMVTJzdOIgr9qPkH4D_G_-Db2vgx0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881655432</pqid></control><display><type>article</type><title>InP based semiconductor structures for radiation detection</title><source>SpringerNature Journals</source><creator>Procházková, Olga ; Grym, Jan ; Pekárek, Ladislav ; Zavadil, Jiří ; Žďánský, Karel</creator><creatorcontrib>Procházková, Olga ; Grym, Jan ; Pekárek, Ladislav ; Zavadil, Jiří ; Žďánský, Karel</creatorcontrib><description>We report the preparation of semi-insulating InP single crystals of
p
-type conductivity and intentionally undoped
p
-type epitaxial layers for radiation detection. We focus on (i) the growth of InP single crystals doped with copper by the Czochralski technique and their subsequent temperature annealing to convert them to a semi-insulating (SI) state of
p
-type conductivity, and (ii) the growth of thick (>10 μm)
p
-type InP layers by liquid phase epitaxy with an admixture of Pr and Dy. Grown layers and single crystals were examined by low-temperature photoluminescence spectroscopy, capacitance-voltage and temperature dependent Hall measurements. An efficient purification due to rare earth (RE) admixture has been observed and layers grown with the addition of Pr and Dy exhibit the change of electrical conductivity from
n
to
p
at certain RE concentration in the melt. Dominant acceptors responsible for conductivity conversion have been identified. Three types of detection structures exploiting the Schottky or Schottky like contacts on pure and SI
p
-type InP or exploiting the
p
–
n
junction were designed.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-007-9407-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Admixtures ; Annealing ; Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures ; Cross-disciplinary physics: materials science; rheology ; Dysprosium ; Electronics ; Exact sciences and technology ; Growth from melts; zone melting and refining ; Heat treatment ; Indium phosphides ; Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids) ; Materials Science ; Metals. Metallurgy ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Optical and Electronic Materials ; Physics ; Production techniques ; Rare earth metals ; Resistivity ; Semiconductors ; Single crystals ; Treatment of materials and its effects on microstructure and properties</subject><ispartof>Journal of materials science. Materials in electronics, 2008-09, Vol.19 (8-9), p.770-775</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><rights>2015 INIST-CNRS</rights><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-30825a8cb331c5de32f2de9407ff89d0626a105b70f2c76ec4c05491e1da6bdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-007-9407-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-007-9407-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,315,782,786,791,792,23939,23940,25149,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23743796$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Procházková, Olga</creatorcontrib><creatorcontrib>Grym, Jan</creatorcontrib><creatorcontrib>Pekárek, Ladislav</creatorcontrib><creatorcontrib>Zavadil, Jiří</creatorcontrib><creatorcontrib>Žďánský, Karel</creatorcontrib><title>InP based semiconductor structures for radiation detection</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>We report the preparation of semi-insulating InP single crystals of
p
-type conductivity and intentionally undoped
p
-type epitaxial layers for radiation detection. We focus on (i) the growth of InP single crystals doped with copper by the Czochralski technique and their subsequent temperature annealing to convert them to a semi-insulating (SI) state of
p
-type conductivity, and (ii) the growth of thick (>10 μm)
p
-type InP layers by liquid phase epitaxy with an admixture of Pr and Dy. Grown layers and single crystals were examined by low-temperature photoluminescence spectroscopy, capacitance-voltage and temperature dependent Hall measurements. An efficient purification due to rare earth (RE) admixture has been observed and layers grown with the addition of Pr and Dy exhibit the change of electrical conductivity from
n
to
p
at certain RE concentration in the melt. Dominant acceptors responsible for conductivity conversion have been identified. Three types of detection structures exploiting the Schottky or Schottky like contacts on pure and SI
p
-type InP or exploiting the
p
–
n
junction were designed.</description><subject>Admixtures</subject><subject>Annealing</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dysprosium</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Growth from melts; zone melting and refining</subject><subject>Heat treatment</subject><subject>Indium phosphides</subject><subject>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</subject><subject>Materials Science</subject><subject>Metals. Metallurgy</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Rare earth metals</subject><subject>Resistivity</subject><subject>Semiconductors</subject><subject>Single crystals</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLcgiKfofu_GmxQ_CgU9KHhbNvshKW1Sd5KD_94NKQqCl5l3mGdeXgahc4KvCcbqBgjWgpdZlhXPhRygGRGKlVzT90M0w5VQJReUHqMTgDXGWHKmZ-h22b4UtYXgCwjbxnWtH1zfpQL6lMWQAhQxj8n6xvZN1xY-9MGN6hQdRbuBcLbvc_T2cP-6eCpXz4_Lxd2qdIxWfcmwpsJqVzNGnPCB0Uh9GEPGqCuPJZWWYFErHKlTMjjusOAVCcRbWXvP5uhq8t2l7nMI0JttAy5sNrYN3QCmIlxKqrjK5MUfct0Nqc3hjNZECsEZzRCZIJc6gBSi2aVma9OXIdiMvzTTL80ox5iG5JvLvbEFZzcx2dY18HNImeJMVTJzdOIgr9qPkH4D_G_-Db2vgx0</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Procházková, Olga</creator><creator>Grym, Jan</creator><creator>Pekárek, Ladislav</creator><creator>Zavadil, Jiří</creator><creator>Žďánský, Karel</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><scope>7QQ</scope></search><sort><creationdate>20080901</creationdate><title>InP based semiconductor structures for radiation detection</title><author>Procházková, Olga ; Grym, Jan ; Pekárek, Ladislav ; Zavadil, Jiří ; Žďánský, Karel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-30825a8cb331c5de32f2de9407ff89d0626a105b70f2c76ec4c05491e1da6bdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Admixtures</topic><topic>Annealing</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dysprosium</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Growth from melts; zone melting and refining</topic><topic>Heat treatment</topic><topic>Indium phosphides</topic><topic>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</topic><topic>Materials Science</topic><topic>Metals. Metallurgy</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Rare earth metals</topic><topic>Resistivity</topic><topic>Semiconductors</topic><topic>Single crystals</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Procházková, Olga</creatorcontrib><creatorcontrib>Grym, Jan</creatorcontrib><creatorcontrib>Pekárek, Ladislav</creatorcontrib><creatorcontrib>Zavadil, Jiří</creatorcontrib><creatorcontrib>Žďánský, Karel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Ceramic Abstracts</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Procházková, Olga</au><au>Grym, Jan</au><au>Pekárek, Ladislav</au><au>Zavadil, Jiří</au><au>Žďánský, Karel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>InP based semiconductor structures for radiation detection</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>19</volume><issue>8-9</issue><spage>770</spage><epage>775</epage><pages>770-775</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>We report the preparation of semi-insulating InP single crystals of
p
-type conductivity and intentionally undoped
p
-type epitaxial layers for radiation detection. We focus on (i) the growth of InP single crystals doped with copper by the Czochralski technique and their subsequent temperature annealing to convert them to a semi-insulating (SI) state of
p
-type conductivity, and (ii) the growth of thick (>10 μm)
p
-type InP layers by liquid phase epitaxy with an admixture of Pr and Dy. Grown layers and single crystals were examined by low-temperature photoluminescence spectroscopy, capacitance-voltage and temperature dependent Hall measurements. An efficient purification due to rare earth (RE) admixture has been observed and layers grown with the addition of Pr and Dy exhibit the change of electrical conductivity from
n
to
p
at certain RE concentration in the melt. Dominant acceptors responsible for conductivity conversion have been identified. Three types of detection structures exploiting the Schottky or Schottky like contacts on pure and SI
p
-type InP or exploiting the
p
–
n
junction were designed.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10854-007-9407-1</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2008-09, Vol.19 (8-9), p.770-775 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_miscellaneous_914662747 |
source | SpringerNature Journals |
subjects | Admixtures Annealing Applied sciences Characterization and Evaluation of Materials Chemistry and Materials Science Cold working, work hardening annealing, quenching, tempering, recovery, and recrystallization textures Cross-disciplinary physics: materials science rheology Dysprosium Electronics Exact sciences and technology Growth from melts zone melting and refining Heat treatment Indium phosphides Liquid phase epitaxy deposition from liquid phases (melts, solutions, and surface layers on liquids) Materials Science Metals. Metallurgy Methods of crystal growth physics of crystal growth Methods of deposition of films and coatings film growth and epitaxy Optical and Electronic Materials Physics Production techniques Rare earth metals Resistivity Semiconductors Single crystals Treatment of materials and its effects on microstructure and properties |
title | InP based semiconductor structures for radiation detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T21%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=InP%20based%20semiconductor%20structures%20for%20radiation%20detection&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Proch%C3%A1zkov%C3%A1,%20Olga&rft.date=2008-09-01&rft.volume=19&rft.issue=8-9&rft.spage=770&rft.epage=775&rft.pages=770-775&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-007-9407-1&rft_dat=%3Cproquest_cross%3E2419912051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881655432&rft_id=info:pmid/&rfr_iscdi=true |