In Situ Visualization of Impacting Phenomena of Plasma-Sprayed Zirconia: From Single Splat to Coating Formation
The authors have developed an in situ monitoring system for particle impacts under atmospheric dc plasma spraying conditions. This system utilized a high-speed video camera coupled with a long-distance microscope, and was capable of capturing the particle-impinging phenomena at one million frames pe...
Gespeichert in:
Veröffentlicht in: | Journal of thermal spray technology 2008-12, Vol.17 (5-6), p.623-630 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors have developed an in situ monitoring system for particle impacts under atmospheric dc plasma spraying conditions. This system utilized a high-speed video camera coupled with a long-distance microscope, and was capable of capturing the particle-impinging phenomena at one million frames per second. To understand the coating formation mechanism, two approaches were attempted, i.e., observation of the single splat formation and the subsequent coating formation. In the former case, the deformation and cooling processes of yttria-stabilized zirconia (YSZ) droplets impinging on substrates were successfully captured. In the latter case, multiple-droplet-impacting phenomena were observed as an ensemble treatment. Representing the coating process, the tower formation (0-dimensional) and bead formation (1-dimensional) were observed under typical plasma spray conditions for thermal barrier coatings using a triggering system coupled with the motion of a robot. The obtained images clearly showed the coating formation resulting from the integration of single splats. |
---|---|
ISSN: | 1059-9630 1544-1016 |
DOI: | 10.1007/s11666-008-9221-1 |