Polarization ellipse and Stokes parameters in geometric algebra
In this paper, we use geometric algebra to describe the polarization ellipse and Stokes parameters. We show that a solution to Maxwell's equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the wave funct...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2012, Vol.29 (1), p.89-98 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98 |
---|---|
container_issue | 1 |
container_start_page | 89 |
container_title | Journal of the Optical Society of America. A, Optics, image science, and vision |
container_volume | 29 |
creator | SANTOS, Adler G SUGON, Quirino M MCNAMARA, Daniel J |
description | In this paper, we use geometric algebra to describe the polarization ellipse and Stokes parameters. We show that a solution to Maxwell's equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the wave function arguments from complex scalars to complex vectors. This conversion allows us to separate the electric field vector and the imaginary magnetic field vector, because exponentials of imaginary scalars convert vectors to imaginary vectors and vice versa, while exponentials of imaginary vectors only rotate the vector or imaginary vector they are multiplied to. We convert this expression for polarized light into two other representations: the Cartesian representation and the rotated ellipse representation. We compute the conversion relations among the representation parameters and their corresponding Stokes parameters. And finally, we propose a set of geometric relations between the electric and magnetic fields that satisfy an equation similar to the Poincaré sphere equation. |
doi_str_mv | 10.1364/JOSAA.29.000089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914662274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031293082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-89340d0d143504faac3782d992b017c4e3024387ee1e5c7dcb7172dce5e9970e3</originalsourceid><addsrcrecordid>eNp90EtLAzEUBeAgiq3VtTuZjehm2jwnyUpK8UmhQnU9ZDJ3SnQeNZku9NcbbdWd2dxc-HIIB6FTgseEZXzysFhOp2OqxzgepffQkAiKUyUY3Y93rHgqBdUDdBTCSyQ8U_IQDSilRDEhhujqsauNdx-md12bQF27dYDEtGWy7LtXCMnaeNNADz4krk1W0MXFO5uYegWFN8fooDJ1gJPdHKHnm-un2V06X9zez6bz1DKh-1RpxnGJS8KZwLwyxjKpaKk1LTCRlgPDlDMlAQgIK0tbSCJpaUGA1hIDG6GLbe7ad28bCH3euGDjf00L3SbkmvAso1TyKC__lQQzQjXDikY62VLruxA8VPnau8b494jyr37z735zqvNtv_HF2S58UzRQ_vqfQiM43wETrKkrb1rrwp8TQguCCfsEe9GBdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031293082</pqid></control><display><type>article</type><title>Polarization ellipse and Stokes parameters in geometric algebra</title><source>Optica Publishing Group Journals</source><creator>SANTOS, Adler G ; SUGON, Quirino M ; MCNAMARA, Daniel J</creator><creatorcontrib>SANTOS, Adler G ; SUGON, Quirino M ; MCNAMARA, Daniel J</creatorcontrib><description>In this paper, we use geometric algebra to describe the polarization ellipse and Stokes parameters. We show that a solution to Maxwell's equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the wave function arguments from complex scalars to complex vectors. This conversion allows us to separate the electric field vector and the imaginary magnetic field vector, because exponentials of imaginary scalars convert vectors to imaginary vectors and vice versa, while exponentials of imaginary vectors only rotate the vector or imaginary vector they are multiplied to. We convert this expression for polarized light into two other representations: the Cartesian representation and the rotated ellipse representation. We compute the conversion relations among the representation parameters and their corresponding Stokes parameters. And finally, we propose a set of geometric relations between the electric and magnetic fields that satisfy an equation similar to the Poincaré sphere equation.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.29.000089</identifier><identifier>PMID: 22218355</identifier><language>eng</language><publisher>Washington, DC: Optical Society of America</publisher><subject>Algebra ; Applied classical electromagnetism ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Ellipses ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Magnetic fields ; Mathematical analysis ; Optical instruments, equipment and techniques ; Optics ; Physics ; Polarimeters and ellipsometers ; Polarization ; Representations ; Stokes parameters ; Vectors (mathematics) ; Wave optics</subject><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2012, Vol.29 (1), p.89-98</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-89340d0d143504faac3782d992b017c4e3024387ee1e5c7dcb7172dce5e9970e3</citedby><cites>FETCH-LOGICAL-c359t-89340d0d143504faac3782d992b017c4e3024387ee1e5c7dcb7172dce5e9970e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25595101$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22218355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>SANTOS, Adler G</creatorcontrib><creatorcontrib>SUGON, Quirino M</creatorcontrib><creatorcontrib>MCNAMARA, Daniel J</creatorcontrib><title>Polarization ellipse and Stokes parameters in geometric algebra</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><description>In this paper, we use geometric algebra to describe the polarization ellipse and Stokes parameters. We show that a solution to Maxwell's equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the wave function arguments from complex scalars to complex vectors. This conversion allows us to separate the electric field vector and the imaginary magnetic field vector, because exponentials of imaginary scalars convert vectors to imaginary vectors and vice versa, while exponentials of imaginary vectors only rotate the vector or imaginary vector they are multiplied to. We convert this expression for polarized light into two other representations: the Cartesian representation and the rotated ellipse representation. We compute the conversion relations among the representation parameters and their corresponding Stokes parameters. And finally, we propose a set of geometric relations between the electric and magnetic fields that satisfy an equation similar to the Poincaré sphere equation.</description><subject>Algebra</subject><subject>Applied classical electromagnetism</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Ellipses</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>Optical instruments, equipment and techniques</subject><subject>Optics</subject><subject>Physics</subject><subject>Polarimeters and ellipsometers</subject><subject>Polarization</subject><subject>Representations</subject><subject>Stokes parameters</subject><subject>Vectors (mathematics)</subject><subject>Wave optics</subject><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEUBeAgiq3VtTuZjehm2jwnyUpK8UmhQnU9ZDJ3SnQeNZku9NcbbdWd2dxc-HIIB6FTgseEZXzysFhOp2OqxzgepffQkAiKUyUY3Y93rHgqBdUDdBTCSyQ8U_IQDSilRDEhhujqsauNdx-md12bQF27dYDEtGWy7LtXCMnaeNNADz4krk1W0MXFO5uYegWFN8fooDJ1gJPdHKHnm-un2V06X9zez6bz1DKh-1RpxnGJS8KZwLwyxjKpaKk1LTCRlgPDlDMlAQgIK0tbSCJpaUGA1hIDG6GLbe7ad28bCH3euGDjf00L3SbkmvAso1TyKC__lQQzQjXDikY62VLruxA8VPnau8b494jyr37z735zqvNtv_HF2S58UzRQ_vqfQiM43wETrKkrb1rrwp8TQguCCfsEe9GBdw</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>SANTOS, Adler G</creator><creator>SUGON, Quirino M</creator><creator>MCNAMARA, Daniel J</creator><general>Optical Society of America</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>2012</creationdate><title>Polarization ellipse and Stokes parameters in geometric algebra</title><author>SANTOS, Adler G ; SUGON, Quirino M ; MCNAMARA, Daniel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-89340d0d143504faac3782d992b017c4e3024387ee1e5c7dcb7172dce5e9970e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Applied classical electromagnetism</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Ellipses</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>Optical instruments, equipment and techniques</topic><topic>Optics</topic><topic>Physics</topic><topic>Polarimeters and ellipsometers</topic><topic>Polarization</topic><topic>Representations</topic><topic>Stokes parameters</topic><topic>Vectors (mathematics)</topic><topic>Wave optics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SANTOS, Adler G</creatorcontrib><creatorcontrib>SUGON, Quirino M</creatorcontrib><creatorcontrib>MCNAMARA, Daniel J</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SANTOS, Adler G</au><au>SUGON, Quirino M</au><au>MCNAMARA, Daniel J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarization ellipse and Stokes parameters in geometric algebra</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><date>2012</date><risdate>2012</risdate><volume>29</volume><issue>1</issue><spage>89</spage><epage>98</epage><pages>89-98</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>In this paper, we use geometric algebra to describe the polarization ellipse and Stokes parameters. We show that a solution to Maxwell's equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the wave function arguments from complex scalars to complex vectors. This conversion allows us to separate the electric field vector and the imaginary magnetic field vector, because exponentials of imaginary scalars convert vectors to imaginary vectors and vice versa, while exponentials of imaginary vectors only rotate the vector or imaginary vector they are multiplied to. We convert this expression for polarized light into two other representations: the Cartesian representation and the rotated ellipse representation. We compute the conversion relations among the representation parameters and their corresponding Stokes parameters. And finally, we propose a set of geometric relations between the electric and magnetic fields that satisfy an equation similar to the Poincaré sphere equation.</abstract><cop>Washington, DC</cop><pub>Optical Society of America</pub><pmid>22218355</pmid><doi>10.1364/JOSAA.29.000089</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1084-7529 |
ispartof | Journal of the Optical Society of America. A, Optics, image science, and vision, 2012, Vol.29 (1), p.89-98 |
issn | 1084-7529 1520-8532 |
language | eng |
recordid | cdi_proquest_miscellaneous_914662274 |
source | Optica Publishing Group Journals |
subjects | Algebra Applied classical electromagnetism Electromagnetic wave propagation, radiowave propagation Electromagnetism electron and ion optics Ellipses Exact sciences and technology Fundamental areas of phenomenology (including applications) Instruments, apparatus, components and techniques common to several branches of physics and astronomy Magnetic fields Mathematical analysis Optical instruments, equipment and techniques Optics Physics Polarimeters and ellipsometers Polarization Representations Stokes parameters Vectors (mathematics) Wave optics |
title | Polarization ellipse and Stokes parameters in geometric algebra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T16%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarization%20ellipse%20and%20Stokes%20parameters%20in%20geometric%20algebra&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=SANTOS,%20Adler%20G&rft.date=2012&rft.volume=29&rft.issue=1&rft.spage=89&rft.epage=98&rft.pages=89-98&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.29.000089&rft_dat=%3Cproquest_cross%3E1031293082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031293082&rft_id=info:pmid/22218355&rfr_iscdi=true |