Polarization ellipse and Stokes parameters in geometric algebra

In this paper, we use geometric algebra to describe the polarization ellipse and Stokes parameters. We show that a solution to Maxwell's equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the wave funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2012, Vol.29 (1), p.89-98
Hauptverfasser: SANTOS, Adler G, SUGON, Quirino M, MCNAMARA, Daniel J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue 1
container_start_page 89
container_title Journal of the Optical Society of America. A, Optics, image science, and vision
container_volume 29
creator SANTOS, Adler G
SUGON, Quirino M
MCNAMARA, Daniel J
description In this paper, we use geometric algebra to describe the polarization ellipse and Stokes parameters. We show that a solution to Maxwell's equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the wave function arguments from complex scalars to complex vectors. This conversion allows us to separate the electric field vector and the imaginary magnetic field vector, because exponentials of imaginary scalars convert vectors to imaginary vectors and vice versa, while exponentials of imaginary vectors only rotate the vector or imaginary vector they are multiplied to. We convert this expression for polarized light into two other representations: the Cartesian representation and the rotated ellipse representation. We compute the conversion relations among the representation parameters and their corresponding Stokes parameters. And finally, we propose a set of geometric relations between the electric and magnetic fields that satisfy an equation similar to the Poincaré sphere equation.
doi_str_mv 10.1364/JOSAA.29.000089
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914662274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031293082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-89340d0d143504faac3782d992b017c4e3024387ee1e5c7dcb7172dce5e9970e3</originalsourceid><addsrcrecordid>eNp90EtLAzEUBeAgiq3VtTuZjehm2jwnyUpK8UmhQnU9ZDJ3SnQeNZku9NcbbdWd2dxc-HIIB6FTgseEZXzysFhOp2OqxzgepffQkAiKUyUY3Y93rHgqBdUDdBTCSyQ8U_IQDSilRDEhhujqsauNdx-md12bQF27dYDEtGWy7LtXCMnaeNNADz4krk1W0MXFO5uYegWFN8fooDJ1gJPdHKHnm-un2V06X9zez6bz1DKh-1RpxnGJS8KZwLwyxjKpaKk1LTCRlgPDlDMlAQgIK0tbSCJpaUGA1hIDG6GLbe7ad28bCH3euGDjf00L3SbkmvAso1TyKC__lQQzQjXDikY62VLruxA8VPnau8b494jyr37z735zqvNtv_HF2S58UzRQ_vqfQiM43wETrKkrb1rrwp8TQguCCfsEe9GBdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031293082</pqid></control><display><type>article</type><title>Polarization ellipse and Stokes parameters in geometric algebra</title><source>Optica Publishing Group Journals</source><creator>SANTOS, Adler G ; SUGON, Quirino M ; MCNAMARA, Daniel J</creator><creatorcontrib>SANTOS, Adler G ; SUGON, Quirino M ; MCNAMARA, Daniel J</creatorcontrib><description>In this paper, we use geometric algebra to describe the polarization ellipse and Stokes parameters. We show that a solution to Maxwell's equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the wave function arguments from complex scalars to complex vectors. This conversion allows us to separate the electric field vector and the imaginary magnetic field vector, because exponentials of imaginary scalars convert vectors to imaginary vectors and vice versa, while exponentials of imaginary vectors only rotate the vector or imaginary vector they are multiplied to. We convert this expression for polarized light into two other representations: the Cartesian representation and the rotated ellipse representation. We compute the conversion relations among the representation parameters and their corresponding Stokes parameters. And finally, we propose a set of geometric relations between the electric and magnetic fields that satisfy an equation similar to the Poincaré sphere equation.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.29.000089</identifier><identifier>PMID: 22218355</identifier><language>eng</language><publisher>Washington, DC: Optical Society of America</publisher><subject>Algebra ; Applied classical electromagnetism ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Ellipses ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Magnetic fields ; Mathematical analysis ; Optical instruments, equipment and techniques ; Optics ; Physics ; Polarimeters and ellipsometers ; Polarization ; Representations ; Stokes parameters ; Vectors (mathematics) ; Wave optics</subject><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2012, Vol.29 (1), p.89-98</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-89340d0d143504faac3782d992b017c4e3024387ee1e5c7dcb7172dce5e9970e3</citedby><cites>FETCH-LOGICAL-c359t-89340d0d143504faac3782d992b017c4e3024387ee1e5c7dcb7172dce5e9970e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25595101$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22218355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>SANTOS, Adler G</creatorcontrib><creatorcontrib>SUGON, Quirino M</creatorcontrib><creatorcontrib>MCNAMARA, Daniel J</creatorcontrib><title>Polarization ellipse and Stokes parameters in geometric algebra</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><description>In this paper, we use geometric algebra to describe the polarization ellipse and Stokes parameters. We show that a solution to Maxwell's equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the wave function arguments from complex scalars to complex vectors. This conversion allows us to separate the electric field vector and the imaginary magnetic field vector, because exponentials of imaginary scalars convert vectors to imaginary vectors and vice versa, while exponentials of imaginary vectors only rotate the vector or imaginary vector they are multiplied to. We convert this expression for polarized light into two other representations: the Cartesian representation and the rotated ellipse representation. We compute the conversion relations among the representation parameters and their corresponding Stokes parameters. And finally, we propose a set of geometric relations between the electric and magnetic fields that satisfy an equation similar to the Poincaré sphere equation.</description><subject>Algebra</subject><subject>Applied classical electromagnetism</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Ellipses</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>Optical instruments, equipment and techniques</subject><subject>Optics</subject><subject>Physics</subject><subject>Polarimeters and ellipsometers</subject><subject>Polarization</subject><subject>Representations</subject><subject>Stokes parameters</subject><subject>Vectors (mathematics)</subject><subject>Wave optics</subject><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEUBeAgiq3VtTuZjehm2jwnyUpK8UmhQnU9ZDJ3SnQeNZku9NcbbdWd2dxc-HIIB6FTgseEZXzysFhOp2OqxzgepffQkAiKUyUY3Y93rHgqBdUDdBTCSyQ8U_IQDSilRDEhhujqsauNdx-md12bQF27dYDEtGWy7LtXCMnaeNNADz4krk1W0MXFO5uYegWFN8fooDJ1gJPdHKHnm-un2V06X9zez6bz1DKh-1RpxnGJS8KZwLwyxjKpaKk1LTCRlgPDlDMlAQgIK0tbSCJpaUGA1hIDG6GLbe7ad28bCH3euGDjf00L3SbkmvAso1TyKC__lQQzQjXDikY62VLruxA8VPnau8b494jyr37z735zqvNtv_HF2S58UzRQ_vqfQiM43wETrKkrb1rrwp8TQguCCfsEe9GBdw</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>SANTOS, Adler G</creator><creator>SUGON, Quirino M</creator><creator>MCNAMARA, Daniel J</creator><general>Optical Society of America</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>2012</creationdate><title>Polarization ellipse and Stokes parameters in geometric algebra</title><author>SANTOS, Adler G ; SUGON, Quirino M ; MCNAMARA, Daniel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-89340d0d143504faac3782d992b017c4e3024387ee1e5c7dcb7172dce5e9970e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Applied classical electromagnetism</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Ellipses</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>Optical instruments, equipment and techniques</topic><topic>Optics</topic><topic>Physics</topic><topic>Polarimeters and ellipsometers</topic><topic>Polarization</topic><topic>Representations</topic><topic>Stokes parameters</topic><topic>Vectors (mathematics)</topic><topic>Wave optics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SANTOS, Adler G</creatorcontrib><creatorcontrib>SUGON, Quirino M</creatorcontrib><creatorcontrib>MCNAMARA, Daniel J</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SANTOS, Adler G</au><au>SUGON, Quirino M</au><au>MCNAMARA, Daniel J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarization ellipse and Stokes parameters in geometric algebra</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><date>2012</date><risdate>2012</risdate><volume>29</volume><issue>1</issue><spage>89</spage><epage>98</epage><pages>89-98</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>In this paper, we use geometric algebra to describe the polarization ellipse and Stokes parameters. We show that a solution to Maxwell's equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the wave function arguments from complex scalars to complex vectors. This conversion allows us to separate the electric field vector and the imaginary magnetic field vector, because exponentials of imaginary scalars convert vectors to imaginary vectors and vice versa, while exponentials of imaginary vectors only rotate the vector or imaginary vector they are multiplied to. We convert this expression for polarized light into two other representations: the Cartesian representation and the rotated ellipse representation. We compute the conversion relations among the representation parameters and their corresponding Stokes parameters. And finally, we propose a set of geometric relations between the electric and magnetic fields that satisfy an equation similar to the Poincaré sphere equation.</abstract><cop>Washington, DC</cop><pub>Optical Society of America</pub><pmid>22218355</pmid><doi>10.1364/JOSAA.29.000089</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1084-7529
ispartof Journal of the Optical Society of America. A, Optics, image science, and vision, 2012, Vol.29 (1), p.89-98
issn 1084-7529
1520-8532
language eng
recordid cdi_proquest_miscellaneous_914662274
source Optica Publishing Group Journals
subjects Algebra
Applied classical electromagnetism
Electromagnetic wave propagation, radiowave propagation
Electromagnetism
electron and ion optics
Ellipses
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Magnetic fields
Mathematical analysis
Optical instruments, equipment and techniques
Optics
Physics
Polarimeters and ellipsometers
Polarization
Representations
Stokes parameters
Vectors (mathematics)
Wave optics
title Polarization ellipse and Stokes parameters in geometric algebra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T16%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarization%20ellipse%20and%20Stokes%20parameters%20in%20geometric%20algebra&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=SANTOS,%20Adler%20G&rft.date=2012&rft.volume=29&rft.issue=1&rft.spage=89&rft.epage=98&rft.pages=89-98&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.29.000089&rft_dat=%3Cproquest_cross%3E1031293082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031293082&rft_id=info:pmid/22218355&rfr_iscdi=true