Intelligent and Efficient Strategy for Unstructured Environment Sensing Using Mobile Robot Agents

In field environments it is not usually possible to provide robots in advance with valid geometric models of its task and environment. The robot or robot teams need to create these models by scanning the environment with its sensors. Here, an information-based iterative algorithm to plan the robot&#...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 2005-08, Vol.43 (2-4), p.217-253
Hauptverfasser: Sujan, Vivek A, Meggiolaro, Marco A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue 2-4
container_start_page 217
container_title Journal of intelligent & robotic systems
container_volume 43
creator Sujan, Vivek A
Meggiolaro, Marco A
description In field environments it is not usually possible to provide robots in advance with valid geometric models of its task and environment. The robot or robot teams need to create these models by scanning the environment with its sensors. Here, an information-based iterative algorithm to plan the robot's visual exploration strategy is proposed to enable it to most efficiently build 3D models of its environment and task. The method assumes mobile robot (or vehicle) with vision sensors mounted at a manipulator end-effector (eye-in-hand system). This algorithm efficiently repositions the systems' sensing agents using an information theoretic approach and fuses sensory information using physical models to yield a geometrically consistent environment map. This is achieved by utilizing a metric derived from Shannon's information theory to determine optimal sensing poses for the agent(s) mapping a highly unstructured environment. This map is then distributed among the agents using an information-based relevant data reduction scheme. This method is particularly well suited to unstructured environments, where sensor uncertainty is significant. Issues addressed include model-based multiple sensor data fusion, and uncertainty and vehicle suspension motion compensation. Simulation results show the effectiveness of this algorithm.
doi_str_mv 10.1007/s10846-004-3063-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914662244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29272160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-712015acc558757225bfedfa910895b4cbfaf1563168bbd3dda11f7acf117d8d3</originalsourceid><addsrcrecordid>eNp90U1LxDAQBuAgCq4fP8Bb8aCn6kzSJM1RxC9QBHXPIU2TpbKbaJIK--_tup48eJlh4GHg5SXkBOECAeRlRmgbUQM0NQPB6vUOmSGXrIYG1C6ZgaJYA1Vinxzk_A4AquVqRsxDKG65HBYulMqEvrrxfrDD5notyRS3WFc-pmoeckmjLWNykwlfQ4ph9aNcyENYVPOf-RS7Yemql9jFUl1tnuYjsufNMrvj331I5rc3b9f39ePz3cP11WNtGeOllkgBubGW81ZySSnvvOu9UVMwxbvGdt545IKhaLuuZ31vEL001iPKvu3ZITnf_v1I8XN0uejVkO2UzQQXx6wVNkJQ2jSTPPtXUkUlRQETPP0D3-OYwpRCty0KiYh0QrhFNsWck_P6Iw0rk9YaQW-60dtu9NSN3nSj1-wbG2SC4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881671112</pqid></control><display><type>article</type><title>Intelligent and Efficient Strategy for Unstructured Environment Sensing Using Mobile Robot Agents</title><source>SpringerLink Journals</source><creator>Sujan, Vivek A ; Meggiolaro, Marco A</creator><creatorcontrib>Sujan, Vivek A ; Meggiolaro, Marco A</creatorcontrib><description>In field environments it is not usually possible to provide robots in advance with valid geometric models of its task and environment. The robot or robot teams need to create these models by scanning the environment with its sensors. Here, an information-based iterative algorithm to plan the robot's visual exploration strategy is proposed to enable it to most efficiently build 3D models of its environment and task. The method assumes mobile robot (or vehicle) with vision sensors mounted at a manipulator end-effector (eye-in-hand system). This algorithm efficiently repositions the systems' sensing agents using an information theoretic approach and fuses sensory information using physical models to yield a geometrically consistent environment map. This is achieved by utilizing a metric derived from Shannon's information theory to determine optimal sensing poses for the agent(s) mapping a highly unstructured environment. This map is then distributed among the agents using an information-based relevant data reduction scheme. This method is particularly well suited to unstructured environments, where sensor uncertainty is significant. Issues addressed include model-based multiple sensor data fusion, and uncertainty and vehicle suspension motion compensation. Simulation results show the effectiveness of this algorithm.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-004-3063-y</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Algorithms ; Construction ; Detection ; Information theory ; Mathematical models ; Robots ; Sensors ; Strategy ; Studies ; Uncertainty</subject><ispartof>Journal of intelligent &amp; robotic systems, 2005-08, Vol.43 (2-4), p.217-253</ispartof><rights>Springer Science+Business Media, Inc. 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-712015acc558757225bfedfa910895b4cbfaf1563168bbd3dda11f7acf117d8d3</citedby><cites>FETCH-LOGICAL-c335t-712015acc558757225bfedfa910895b4cbfaf1563168bbd3dda11f7acf117d8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sujan, Vivek A</creatorcontrib><creatorcontrib>Meggiolaro, Marco A</creatorcontrib><title>Intelligent and Efficient Strategy for Unstructured Environment Sensing Using Mobile Robot Agents</title><title>Journal of intelligent &amp; robotic systems</title><description>In field environments it is not usually possible to provide robots in advance with valid geometric models of its task and environment. The robot or robot teams need to create these models by scanning the environment with its sensors. Here, an information-based iterative algorithm to plan the robot's visual exploration strategy is proposed to enable it to most efficiently build 3D models of its environment and task. The method assumes mobile robot (or vehicle) with vision sensors mounted at a manipulator end-effector (eye-in-hand system). This algorithm efficiently repositions the systems' sensing agents using an information theoretic approach and fuses sensory information using physical models to yield a geometrically consistent environment map. This is achieved by utilizing a metric derived from Shannon's information theory to determine optimal sensing poses for the agent(s) mapping a highly unstructured environment. This map is then distributed among the agents using an information-based relevant data reduction scheme. This method is particularly well suited to unstructured environments, where sensor uncertainty is significant. Issues addressed include model-based multiple sensor data fusion, and uncertainty and vehicle suspension motion compensation. Simulation results show the effectiveness of this algorithm.</description><subject>Algorithms</subject><subject>Construction</subject><subject>Detection</subject><subject>Information theory</subject><subject>Mathematical models</subject><subject>Robots</subject><subject>Sensors</subject><subject>Strategy</subject><subject>Studies</subject><subject>Uncertainty</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp90U1LxDAQBuAgCq4fP8Bb8aCn6kzSJM1RxC9QBHXPIU2TpbKbaJIK--_tup48eJlh4GHg5SXkBOECAeRlRmgbUQM0NQPB6vUOmSGXrIYG1C6ZgaJYA1Vinxzk_A4AquVqRsxDKG65HBYulMqEvrrxfrDD5notyRS3WFc-pmoeckmjLWNykwlfQ4ph9aNcyENYVPOf-RS7Yemql9jFUl1tnuYjsufNMrvj331I5rc3b9f39ePz3cP11WNtGeOllkgBubGW81ZySSnvvOu9UVMwxbvGdt545IKhaLuuZ31vEL001iPKvu3ZITnf_v1I8XN0uejVkO2UzQQXx6wVNkJQ2jSTPPtXUkUlRQETPP0D3-OYwpRCty0KiYh0QrhFNsWck_P6Iw0rk9YaQW-60dtu9NSN3nSj1-wbG2SC4g</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Sujan, Vivek A</creator><creator>Meggiolaro, Marco A</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>F28</scope></search><sort><creationdate>20050801</creationdate><title>Intelligent and Efficient Strategy for Unstructured Environment Sensing Using Mobile Robot Agents</title><author>Sujan, Vivek A ; Meggiolaro, Marco A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-712015acc558757225bfedfa910895b4cbfaf1563168bbd3dda11f7acf117d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Construction</topic><topic>Detection</topic><topic>Information theory</topic><topic>Mathematical models</topic><topic>Robots</topic><topic>Sensors</topic><topic>Strategy</topic><topic>Studies</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sujan, Vivek A</creatorcontrib><creatorcontrib>Meggiolaro, Marco A</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Journal of intelligent &amp; robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sujan, Vivek A</au><au>Meggiolaro, Marco A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent and Efficient Strategy for Unstructured Environment Sensing Using Mobile Robot Agents</atitle><jtitle>Journal of intelligent &amp; robotic systems</jtitle><date>2005-08-01</date><risdate>2005</risdate><volume>43</volume><issue>2-4</issue><spage>217</spage><epage>253</epage><pages>217-253</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>In field environments it is not usually possible to provide robots in advance with valid geometric models of its task and environment. The robot or robot teams need to create these models by scanning the environment with its sensors. Here, an information-based iterative algorithm to plan the robot's visual exploration strategy is proposed to enable it to most efficiently build 3D models of its environment and task. The method assumes mobile robot (or vehicle) with vision sensors mounted at a manipulator end-effector (eye-in-hand system). This algorithm efficiently repositions the systems' sensing agents using an information theoretic approach and fuses sensory information using physical models to yield a geometrically consistent environment map. This is achieved by utilizing a metric derived from Shannon's information theory to determine optimal sensing poses for the agent(s) mapping a highly unstructured environment. This map is then distributed among the agents using an information-based relevant data reduction scheme. This method is particularly well suited to unstructured environments, where sensor uncertainty is significant. Issues addressed include model-based multiple sensor data fusion, and uncertainty and vehicle suspension motion compensation. Simulation results show the effectiveness of this algorithm.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10846-004-3063-y</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-0296
ispartof Journal of intelligent & robotic systems, 2005-08, Vol.43 (2-4), p.217-253
issn 0921-0296
1573-0409
language eng
recordid cdi_proquest_miscellaneous_914662244
source SpringerLink Journals
subjects Algorithms
Construction
Detection
Information theory
Mathematical models
Robots
Sensors
Strategy
Studies
Uncertainty
title Intelligent and Efficient Strategy for Unstructured Environment Sensing Using Mobile Robot Agents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20and%20Efficient%20Strategy%20for%20Unstructured%20Environment%20Sensing%20Using%20Mobile%20Robot%20Agents&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Sujan,%20Vivek%20A&rft.date=2005-08-01&rft.volume=43&rft.issue=2-4&rft.spage=217&rft.epage=253&rft.pages=217-253&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-004-3063-y&rft_dat=%3Cproquest_cross%3E29272160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881671112&rft_id=info:pmid/&rfr_iscdi=true