Modeling Microstructural Evolution During Dynamic Recrystallization of Alloy D9 Using Artificial Neural Network
An artificial neural network (ANN) model was developed to predict the microstructural evolution of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel (Alloy D9) during dynamic recrystallization (DRX). The input parameters were strain, strain rate, and temperature whereas microstructural featur...
Gespeichert in:
Veröffentlicht in: | Journal of materials engineering and performance 2007-12, Vol.16 (6), p.672-679 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 679 |
---|---|
container_issue | 6 |
container_start_page | 672 |
container_title | Journal of materials engineering and performance |
container_volume | 16 |
creator | Mandal, Sumantra Sivaprasad, P V Dube, R K |
description | An artificial neural network (ANN) model was developed to predict the microstructural evolution of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel (Alloy D9) during dynamic recrystallization (DRX). The input parameters were strain, strain rate, and temperature whereas microstructural features namely, %DRX and average grain size were the output parameters. The ANN was trained with the database obtained from various industrial scale metal-forming operations like forge hammer, hydraulic press, and rolling carried out in the temperature range 1173-1473 K to various strain levels. The performance of the model was evaluated using a wide variety of statistical indices and the predictability of the model was found to be good. The combined influence of temperature and strain on microstructural features has been simulated employing the developed model. The results were found to be consistent with the relevant fundamental metallurgical phenomena. |
doi_str_mv | 10.1007/s11665-007-9098-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914659647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30954520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-b652c0e1a006292519284b687828b48acf6daa56b84abff700493b5ee59b0a8e3</originalsourceid><addsrcrecordid>eNp90U1PwyAcBvDGaOKcfgBvjQf1UgUKFI7LNl8SNxPjzoQyapisTGg13aeXbp487MRz-OVJ_jxJcgnBHQSguA8QUkqyGDMOOMu2R8kAEowzCBA-jhkQnnHMyWlyFsIKRIgQHiRu5pbamvojnRnlXWh8q5rWS5tOv51tG-PqdNL6Hky6Wq6NSt-08l1opLVmK3fAVenIWtelE54uQm9HvjGVUSb2zPWubq6bH-c_z5OTStqgL_7eYbJ4mL6Pn7KX18fn8eglUzllTVZSghTQUAJAEUcEcsRwSVnBECsxk6qiSykJLRmWZVUVAGCel0Rrwksgmc6Hyc2-d-PdV6tDI9YmKG2trLVrg-AQU8IpLqK8PihzwAkmCER4exDCgiKIECI40qt_dOVaX8eDBSsIjY7CiOAe9f8evK7Expu19J2AQPSjiv2ooo_9qGKb_wJy15VW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875662161</pqid></control><display><type>article</type><title>Modeling Microstructural Evolution During Dynamic Recrystallization of Alloy D9 Using Artificial Neural Network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mandal, Sumantra ; Sivaprasad, P V ; Dube, R K</creator><creatorcontrib>Mandal, Sumantra ; Sivaprasad, P V ; Dube, R K</creatorcontrib><description>An artificial neural network (ANN) model was developed to predict the microstructural evolution of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel (Alloy D9) during dynamic recrystallization (DRX). The input parameters were strain, strain rate, and temperature whereas microstructural features namely, %DRX and average grain size were the output parameters. The ANN was trained with the database obtained from various industrial scale metal-forming operations like forge hammer, hydraulic press, and rolling carried out in the temperature range 1173-1473 K to various strain levels. The performance of the model was evaluated using a wide variety of statistical indices and the predictability of the model was found to be good. The combined influence of temperature and strain on microstructural features has been simulated employing the developed model. The results were found to be consistent with the relevant fundamental metallurgical phenomena.</description><identifier>ISSN: 1059-9495</identifier><identifier>EISSN: 1544-1024</identifier><identifier>DOI: 10.1007/s11665-007-9098-z</identifier><identifier>CODEN: JMEPEG</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Alloy development ; Alloy steels ; Austenitic stainless steels ; Dynamic recrystallization ; Learning theory ; Mathematical models ; Microstructure ; Neural networks ; Strain</subject><ispartof>Journal of materials engineering and performance, 2007-12, Vol.16 (6), p.672-679</ispartof><rights>ASM International 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-b652c0e1a006292519284b687828b48acf6daa56b84abff700493b5ee59b0a8e3</citedby><cites>FETCH-LOGICAL-c368t-b652c0e1a006292519284b687828b48acf6daa56b84abff700493b5ee59b0a8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mandal, Sumantra</creatorcontrib><creatorcontrib>Sivaprasad, P V</creatorcontrib><creatorcontrib>Dube, R K</creatorcontrib><title>Modeling Microstructural Evolution During Dynamic Recrystallization of Alloy D9 Using Artificial Neural Network</title><title>Journal of materials engineering and performance</title><description>An artificial neural network (ANN) model was developed to predict the microstructural evolution of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel (Alloy D9) during dynamic recrystallization (DRX). The input parameters were strain, strain rate, and temperature whereas microstructural features namely, %DRX and average grain size were the output parameters. The ANN was trained with the database obtained from various industrial scale metal-forming operations like forge hammer, hydraulic press, and rolling carried out in the temperature range 1173-1473 K to various strain levels. The performance of the model was evaluated using a wide variety of statistical indices and the predictability of the model was found to be good. The combined influence of temperature and strain on microstructural features has been simulated employing the developed model. The results were found to be consistent with the relevant fundamental metallurgical phenomena.</description><subject>Alloy development</subject><subject>Alloy steels</subject><subject>Austenitic stainless steels</subject><subject>Dynamic recrystallization</subject><subject>Learning theory</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Neural networks</subject><subject>Strain</subject><issn>1059-9495</issn><issn>1544-1024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90U1PwyAcBvDGaOKcfgBvjQf1UgUKFI7LNl8SNxPjzoQyapisTGg13aeXbp487MRz-OVJ_jxJcgnBHQSguA8QUkqyGDMOOMu2R8kAEowzCBA-jhkQnnHMyWlyFsIKRIgQHiRu5pbamvojnRnlXWh8q5rWS5tOv51tG-PqdNL6Hky6Wq6NSt-08l1opLVmK3fAVenIWtelE54uQm9HvjGVUSb2zPWubq6bH-c_z5OTStqgL_7eYbJ4mL6Pn7KX18fn8eglUzllTVZSghTQUAJAEUcEcsRwSVnBECsxk6qiSykJLRmWZVUVAGCel0Rrwksgmc6Hyc2-d-PdV6tDI9YmKG2trLVrg-AQU8IpLqK8PihzwAkmCER4exDCgiKIECI40qt_dOVaX8eDBSsIjY7CiOAe9f8evK7Expu19J2AQPSjiv2ooo_9qGKb_wJy15VW</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Mandal, Sumantra</creator><creator>Sivaprasad, P V</creator><creator>Dube, R K</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20071201</creationdate><title>Modeling Microstructural Evolution During Dynamic Recrystallization of Alloy D9 Using Artificial Neural Network</title><author>Mandal, Sumantra ; Sivaprasad, P V ; Dube, R K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-b652c0e1a006292519284b687828b48acf6daa56b84abff700493b5ee59b0a8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alloy development</topic><topic>Alloy steels</topic><topic>Austenitic stainless steels</topic><topic>Dynamic recrystallization</topic><topic>Learning theory</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Neural networks</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandal, Sumantra</creatorcontrib><creatorcontrib>Sivaprasad, P V</creatorcontrib><creatorcontrib>Dube, R K</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials engineering and performance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandal, Sumantra</au><au>Sivaprasad, P V</au><au>Dube, R K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Microstructural Evolution During Dynamic Recrystallization of Alloy D9 Using Artificial Neural Network</atitle><jtitle>Journal of materials engineering and performance</jtitle><date>2007-12-01</date><risdate>2007</risdate><volume>16</volume><issue>6</issue><spage>672</spage><epage>679</epage><pages>672-679</pages><issn>1059-9495</issn><eissn>1544-1024</eissn><coden>JMEPEG</coden><abstract>An artificial neural network (ANN) model was developed to predict the microstructural evolution of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel (Alloy D9) during dynamic recrystallization (DRX). The input parameters were strain, strain rate, and temperature whereas microstructural features namely, %DRX and average grain size were the output parameters. The ANN was trained with the database obtained from various industrial scale metal-forming operations like forge hammer, hydraulic press, and rolling carried out in the temperature range 1173-1473 K to various strain levels. The performance of the model was evaluated using a wide variety of statistical indices and the predictability of the model was found to be good. The combined influence of temperature and strain on microstructural features has been simulated employing the developed model. The results were found to be consistent with the relevant fundamental metallurgical phenomena.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11665-007-9098-z</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-9495 |
ispartof | Journal of materials engineering and performance, 2007-12, Vol.16 (6), p.672-679 |
issn | 1059-9495 1544-1024 |
language | eng |
recordid | cdi_proquest_miscellaneous_914659647 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloy development Alloy steels Austenitic stainless steels Dynamic recrystallization Learning theory Mathematical models Microstructure Neural networks Strain |
title | Modeling Microstructural Evolution During Dynamic Recrystallization of Alloy D9 Using Artificial Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Microstructural%20Evolution%20During%20Dynamic%20Recrystallization%20of%20Alloy%20D9%20Using%20Artificial%20Neural%20Network&rft.jtitle=Journal%20of%20materials%20engineering%20and%20performance&rft.au=Mandal,%20Sumantra&rft.date=2007-12-01&rft.volume=16&rft.issue=6&rft.spage=672&rft.epage=679&rft.pages=672-679&rft.issn=1059-9495&rft.eissn=1544-1024&rft.coden=JMEPEG&rft_id=info:doi/10.1007/s11665-007-9098-z&rft_dat=%3Cproquest_cross%3E30954520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875662161&rft_id=info:pmid/&rfr_iscdi=true |