Modeling Microstructural Evolution During Dynamic Recrystallization of Alloy D9 Using Artificial Neural Network

An artificial neural network (ANN) model was developed to predict the microstructural evolution of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel (Alloy D9) during dynamic recrystallization (DRX). The input parameters were strain, strain rate, and temperature whereas microstructural featur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials engineering and performance 2007-12, Vol.16 (6), p.672-679
Hauptverfasser: Mandal, Sumantra, Sivaprasad, P V, Dube, R K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 679
container_issue 6
container_start_page 672
container_title Journal of materials engineering and performance
container_volume 16
creator Mandal, Sumantra
Sivaprasad, P V
Dube, R K
description An artificial neural network (ANN) model was developed to predict the microstructural evolution of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel (Alloy D9) during dynamic recrystallization (DRX). The input parameters were strain, strain rate, and temperature whereas microstructural features namely, %DRX and average grain size were the output parameters. The ANN was trained with the database obtained from various industrial scale metal-forming operations like forge hammer, hydraulic press, and rolling carried out in the temperature range 1173-1473 K to various strain levels. The performance of the model was evaluated using a wide variety of statistical indices and the predictability of the model was found to be good. The combined influence of temperature and strain on microstructural features has been simulated employing the developed model. The results were found to be consistent with the relevant fundamental metallurgical phenomena.
doi_str_mv 10.1007/s11665-007-9098-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_914659647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30954520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-b652c0e1a006292519284b687828b48acf6daa56b84abff700493b5ee59b0a8e3</originalsourceid><addsrcrecordid>eNp90U1PwyAcBvDGaOKcfgBvjQf1UgUKFI7LNl8SNxPjzoQyapisTGg13aeXbp487MRz-OVJ_jxJcgnBHQSguA8QUkqyGDMOOMu2R8kAEowzCBA-jhkQnnHMyWlyFsIKRIgQHiRu5pbamvojnRnlXWh8q5rWS5tOv51tG-PqdNL6Hky6Wq6NSt-08l1opLVmK3fAVenIWtelE54uQm9HvjGVUSb2zPWubq6bH-c_z5OTStqgL_7eYbJ4mL6Pn7KX18fn8eglUzllTVZSghTQUAJAEUcEcsRwSVnBECsxk6qiSykJLRmWZVUVAGCel0Rrwksgmc6Hyc2-d-PdV6tDI9YmKG2trLVrg-AQU8IpLqK8PihzwAkmCER4exDCgiKIECI40qt_dOVaX8eDBSsIjY7CiOAe9f8evK7Expu19J2AQPSjiv2ooo_9qGKb_wJy15VW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875662161</pqid></control><display><type>article</type><title>Modeling Microstructural Evolution During Dynamic Recrystallization of Alloy D9 Using Artificial Neural Network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mandal, Sumantra ; Sivaprasad, P V ; Dube, R K</creator><creatorcontrib>Mandal, Sumantra ; Sivaprasad, P V ; Dube, R K</creatorcontrib><description>An artificial neural network (ANN) model was developed to predict the microstructural evolution of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel (Alloy D9) during dynamic recrystallization (DRX). The input parameters were strain, strain rate, and temperature whereas microstructural features namely, %DRX and average grain size were the output parameters. The ANN was trained with the database obtained from various industrial scale metal-forming operations like forge hammer, hydraulic press, and rolling carried out in the temperature range 1173-1473 K to various strain levels. The performance of the model was evaluated using a wide variety of statistical indices and the predictability of the model was found to be good. The combined influence of temperature and strain on microstructural features has been simulated employing the developed model. The results were found to be consistent with the relevant fundamental metallurgical phenomena.</description><identifier>ISSN: 1059-9495</identifier><identifier>EISSN: 1544-1024</identifier><identifier>DOI: 10.1007/s11665-007-9098-z</identifier><identifier>CODEN: JMEPEG</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Alloy development ; Alloy steels ; Austenitic stainless steels ; Dynamic recrystallization ; Learning theory ; Mathematical models ; Microstructure ; Neural networks ; Strain</subject><ispartof>Journal of materials engineering and performance, 2007-12, Vol.16 (6), p.672-679</ispartof><rights>ASM International 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-b652c0e1a006292519284b687828b48acf6daa56b84abff700493b5ee59b0a8e3</citedby><cites>FETCH-LOGICAL-c368t-b652c0e1a006292519284b687828b48acf6daa56b84abff700493b5ee59b0a8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mandal, Sumantra</creatorcontrib><creatorcontrib>Sivaprasad, P V</creatorcontrib><creatorcontrib>Dube, R K</creatorcontrib><title>Modeling Microstructural Evolution During Dynamic Recrystallization of Alloy D9 Using Artificial Neural Network</title><title>Journal of materials engineering and performance</title><description>An artificial neural network (ANN) model was developed to predict the microstructural evolution of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel (Alloy D9) during dynamic recrystallization (DRX). The input parameters were strain, strain rate, and temperature whereas microstructural features namely, %DRX and average grain size were the output parameters. The ANN was trained with the database obtained from various industrial scale metal-forming operations like forge hammer, hydraulic press, and rolling carried out in the temperature range 1173-1473 K to various strain levels. The performance of the model was evaluated using a wide variety of statistical indices and the predictability of the model was found to be good. The combined influence of temperature and strain on microstructural features has been simulated employing the developed model. The results were found to be consistent with the relevant fundamental metallurgical phenomena.</description><subject>Alloy development</subject><subject>Alloy steels</subject><subject>Austenitic stainless steels</subject><subject>Dynamic recrystallization</subject><subject>Learning theory</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Neural networks</subject><subject>Strain</subject><issn>1059-9495</issn><issn>1544-1024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90U1PwyAcBvDGaOKcfgBvjQf1UgUKFI7LNl8SNxPjzoQyapisTGg13aeXbp487MRz-OVJ_jxJcgnBHQSguA8QUkqyGDMOOMu2R8kAEowzCBA-jhkQnnHMyWlyFsIKRIgQHiRu5pbamvojnRnlXWh8q5rWS5tOv51tG-PqdNL6Hky6Wq6NSt-08l1opLVmK3fAVenIWtelE54uQm9HvjGVUSb2zPWubq6bH-c_z5OTStqgL_7eYbJ4mL6Pn7KX18fn8eglUzllTVZSghTQUAJAEUcEcsRwSVnBECsxk6qiSykJLRmWZVUVAGCel0Rrwksgmc6Hyc2-d-PdV6tDI9YmKG2trLVrg-AQU8IpLqK8PihzwAkmCER4exDCgiKIECI40qt_dOVaX8eDBSsIjY7CiOAe9f8evK7Expu19J2AQPSjiv2ooo_9qGKb_wJy15VW</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Mandal, Sumantra</creator><creator>Sivaprasad, P V</creator><creator>Dube, R K</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20071201</creationdate><title>Modeling Microstructural Evolution During Dynamic Recrystallization of Alloy D9 Using Artificial Neural Network</title><author>Mandal, Sumantra ; Sivaprasad, P V ; Dube, R K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-b652c0e1a006292519284b687828b48acf6daa56b84abff700493b5ee59b0a8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alloy development</topic><topic>Alloy steels</topic><topic>Austenitic stainless steels</topic><topic>Dynamic recrystallization</topic><topic>Learning theory</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Neural networks</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandal, Sumantra</creatorcontrib><creatorcontrib>Sivaprasad, P V</creatorcontrib><creatorcontrib>Dube, R K</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials engineering and performance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandal, Sumantra</au><au>Sivaprasad, P V</au><au>Dube, R K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Microstructural Evolution During Dynamic Recrystallization of Alloy D9 Using Artificial Neural Network</atitle><jtitle>Journal of materials engineering and performance</jtitle><date>2007-12-01</date><risdate>2007</risdate><volume>16</volume><issue>6</issue><spage>672</spage><epage>679</epage><pages>672-679</pages><issn>1059-9495</issn><eissn>1544-1024</eissn><coden>JMEPEG</coden><abstract>An artificial neural network (ANN) model was developed to predict the microstructural evolution of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel (Alloy D9) during dynamic recrystallization (DRX). The input parameters were strain, strain rate, and temperature whereas microstructural features namely, %DRX and average grain size were the output parameters. The ANN was trained with the database obtained from various industrial scale metal-forming operations like forge hammer, hydraulic press, and rolling carried out in the temperature range 1173-1473 K to various strain levels. The performance of the model was evaluated using a wide variety of statistical indices and the predictability of the model was found to be good. The combined influence of temperature and strain on microstructural features has been simulated employing the developed model. The results were found to be consistent with the relevant fundamental metallurgical phenomena.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11665-007-9098-z</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1059-9495
ispartof Journal of materials engineering and performance, 2007-12, Vol.16 (6), p.672-679
issn 1059-9495
1544-1024
language eng
recordid cdi_proquest_miscellaneous_914659647
source SpringerLink Journals - AutoHoldings
subjects Alloy development
Alloy steels
Austenitic stainless steels
Dynamic recrystallization
Learning theory
Mathematical models
Microstructure
Neural networks
Strain
title Modeling Microstructural Evolution During Dynamic Recrystallization of Alloy D9 Using Artificial Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Microstructural%20Evolution%20During%20Dynamic%20Recrystallization%20of%20Alloy%20D9%20Using%20Artificial%20Neural%20Network&rft.jtitle=Journal%20of%20materials%20engineering%20and%20performance&rft.au=Mandal,%20Sumantra&rft.date=2007-12-01&rft.volume=16&rft.issue=6&rft.spage=672&rft.epage=679&rft.pages=672-679&rft.issn=1059-9495&rft.eissn=1544-1024&rft.coden=JMEPEG&rft_id=info:doi/10.1007/s11665-007-9098-z&rft_dat=%3Cproquest_cross%3E30954520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875662161&rft_id=info:pmid/&rfr_iscdi=true